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ABSTRACT

Recent work by Diether, Malloy, and Scherbina (2002) has established a negative re-
lationship between stock returns and the dispersion of analysts’ earnings forecasts.
I offer a simple explanation for this phenomenon based on the interpretation of dis-
persion as a proxy for unpriced information risk arising when asset values are un-
observable. The relationship then follows from a general options-pricing result: For
a levered firm, expected returns should always decrease with the level of idiosyn-
cratic asset risk. This story is formalized with a straightforward model. Reasonable
parameter values produce large effects, and the theory’s main empirical prediction is
supported in cross-sectional tests.

IN AN INTRIGUING RECENT ARTICLE, Diether, Malloy, and Scherbina (2002) (here-
after DMS) document a new anomaly in the cross section of returns: Firms
with more uncertain earnings (as measured by the dispersion of analysts’ fore-
casts) do worse. The finding is important in that it directly links asset re-
turns with a quantitative measure of an economic primitive—information about
fundamentals—but the sign of the relationship is apparently wrong. Rather
than discounting uncertainty, investors appear to be paying a premium for it.
This would seem to pose a formidable challenge to usual notions of efficiently
functioning markets.

This article argues that the challenge can be met. In fact, a simple, standard
asset pricing model implies the DMS effect even when there is no cross-sectional
relationship between dispersion of beliefs and fundamental risk. The logic relies
on two elements. First, when fundamentals are unobservable, dispersion may
proxy for idiosyncratic parameter risk. Second, for a levered firm, expected
equity returns will in general decrease with the level of idiosyncratic asset risk
due to convexity. I formalize this in a straightforward way. The story has some
direct and distinguishing testable implications, which I take to the data. The
empirical evidence is remarkably supportive.

The theory offered here contrasts sharply with the explanation suggested
by DMS. They view the negative relationship between forecast dispersion and
subsequent returns as supportive of a story in which costly arbitrage leads
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to mispricing when agents have differing beliefs. With short-sales constraints,
the argument goes, the most optimistic investors will bid prices up too high
(assuming they do not adjust for the winner’s curse). Hence the more views
differ, the more stocks may become overpriced.1

This intuition may well be valid. Short-sales constraints, heterogeneous in-
formation, and investor biases are certainly important features of real markets
that undoubtedly affect price formation. However, this paper demonstrates that
they need not be necessary to explain the return puzzle.

My model does not invoke any market frictions or irrationality. This does not
make its description incompatible with the DMS story: Both could be contribut-
ing to the effect. Instead, it illustrates an alternative economic mechanism that
may be important in its own right.2 Moreover, the frictionless approach makes
it possible to develop a formal model whose parameters can be calibrated or
estimated, and whose dynamic implications can be rigorously quantified. Most
importantly, the model provides falsifiable predictions that are, in fact, verified.

Taken together, the model and the tests illustrate the power of classical build-
ing blocks (in this case, the theory of unobserved state variables and the con-
tingent claims analysis of capital structure), when combined, to deliver rich
implications about patterns in asset returns. The paper extends the line of re-
search including Berk, Green, and Naik (1999), Berk and Green (2002), Johnson
(2002), Carlson, Fisher, and Giammarino (2002), Gomes, Kogan, and Zhang
(2002), and Brennan, Wang, and Xia (2002), which seeks ways to account for
the main features of the cross section without invoking systematic mispricing.

The approach here is not without its limitations, however. First, the paper
addresses one anomaly in isolation. Since a simple one-state-variable model
suffices for my purposes, I avoid embellishments that might increase the scope
for capturing additional dimensions of the data. Second, I do not explicitly model
information production/acquisition or capital structure choice, which are both
clearly endogenous aspects of the problem. Although my empirical work will try
to take that endogeneity into account, the model is only a partial-equilibrium
account of return determination. Finally, in the same way, the theory is partial-
equilibrium in taking the fundamental discount factor process of the economy
as given, and the tests offer no new ways of identifying that process. Although
the paper is able to show the linkage between the return patterns and risk
exposures, it makes little or no contribution to our understanding of the nature
of that risk.

The outline of the paper is as follows. Section I presents a brief discus-
sion of the background literature and the connection between forecast dis-
persion, risk, and uncertainty. Section II introduces the asset pricing model,
derives the main dynamic quantities, and provides some numerical illustra-
tions. The primary testable implications are then derived, and these are tested

1 For this to translate into a statement about returns, the overpricing needs to be corrected. So
the story actually implies that changes in dispersion should be correlated with returns.

2 That said, the two explanations can be empirically distinguished. As DMS fully acknowledge,
the evidence tying the dispersion effect in returns to short-sales costs is mixed at best.
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in Section III. Section IV summarizes the contribution and considers some fur-
ther implications.

I. Forecast Dispersion

Since 1983, IBES Corporation has been recording the earnings forecasts of
Wall Street analysts for a large cross section of U.S. stocks. Each observation in
this data set is the issuance of a new forecast (a point estimate) by an individual
analyst for a particular stock’s operating earnings for a particular reporting pe-
riod (e.g., the “current” fiscal year). At any given date, one can readily compute
the cross-analyst standard deviation of all outstanding forecasts pertaining to
a single stock and horizon. Comparing this measure of disagreement across
stocks (after suitably normalizing for scale differences), one finds substantial
variation. This section considers what is really being measured and how the
difference across firms should be interpreted.

The first point to note is that what is not being measured is a subjective
assessment of earnings uncertainty. That is, we have no data on how confident
any of the forecasters is about his/her point estimate. In theory, a group of
forecasters could all agree about the mean of the distribution while each being
hugely uncertain. Conversely, they could all place enormous confidence in their
own estimates while differing wildly from each other.

Despite this possibility, it is common practice throughout the social sciences to
view the variation across a survey of respondents’ assessments of an unknown
quantity as a proxy for the true uncertainty in their environment. The intuitive
basis of this interpretation is clear enough: An observer of the survey with no
other information about the quantity (or about the respondents) might well
view each estimate as being as good as the next, and so treat them as separate
noisy signals of the true value. In aggregating this information, this observer
would then construct a posterior distribution whose variance would be directly
proportional to the variance across signals.

While it seems quite natural, this multiple-signal interpretation raises a
number of questions. Do the reported assessments in fact represent all rele-
vant sources of information available to agents? If so, why do the forecasters
not themselves aggregate their joint information? Are they, in fact, reporting
unbiased views subject to random perturbations, or are the estimates, and in-
deed, the level of dispersion itself a function of their incentives?

The latter issue may be especially important in dealing with IBES data. Not
only are analysts’ forecasts known to be biased by conflicts of interest, but
their choice of whether to conform to or deviate from consensus might well be
influenced by career concerns. This realization highlights the need for a more
complete understanding of exactly how forecast differences arise. On the other
hand, since the focus of this paper is on differences in dispersion across stocks,
issues of bias may matter somewhat less.

Moreover, there is, in fact, empirical support for viewing disagreement as
a proxy for uncertainty. Measures of respondents’ uncertainty are explicitly
elicited by the NBER-ASA survey of economic forecasters. This permits a direct
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comparison with dispersion of the same agents’ forecast means. Zarnowitz and
Lambros (1987) find a significant positive association between the two for fore-
casts of GNP and the GNP deflator. Bomberger (1996) compares the disper-
sion of inflation forecasts from the Livingston survey to subsequent realized
variance of forecast errors and also finds a strong positive relationship. These
studies focus on the time-series interaction between uncertainty and disper-
sion, and their subjects are presumably disinterested. So caution is warranted
in extrapolating to the current setting. Still, the findings do suggest that the
intuition linking the two concepts is on solid ground. This paper will build on
that foundation, taking that linkage as a maintained hypothesis.3

In the next section, I will formalize the multiple-signal model. When disper-
sion arises from separate sources of information about an unobservable fun-
damental process, it becomes natural to distinguish between two components
of the total uncertainty facing investors. The stochastic evolution of the un-
derlying value itself is primitive to the economy in that it is independent of
the informational environment. This variability might be called fundamental
risk. In contrast, the uncertainty about the current value of that process is
purely determined by the information setting. I call this parameter risk. Fore-
cast dispersion, under the above interpretation, proxies only for this second
component.

Why should firms differ in their degree of parameter risk? At least two dis-
tinct factors are involved. First, some businesses are inherently harder to assess
than others. Second, firms, being themselves the source of most of the relevant
information, can choose how much of it to provide. In both respects, parameter
risk clearly goes well beyond uncertainty about current accounting earnings.
But even on this one dimension, firms range from predictable, simple, and
transparent to unfamiliar, complex, and opaque.

While substantial cross-sectional variation in parameter risk is thus to be
expected, from the point of view of financial theory, there is no obvious reason
why agents should care about it. Almost by definition, the noisiness of signals
has no direct connection to the riskiness of a firm’s cash flow. Nor would it seem
likely to have a systematic, nondiversifiable character. This is an empirical
question, and here the results of Diether, Malloy, and Scherbina (2002) are
directly relevant. In fact, their findings would appear to suggest that parameter
risk is “priced”—but that investors prefer to bear more of it, not less. The model
developed below will show that this may be misleading, however. I will not
assume any hedging role for parameter risk, and will regard it as idiosyncratic,
in a sense to be made precise.

To summarize, the paper’s stance is that analyst forecast disagreement is
likely to be a manifestation of nonsystematic risk relating to the unobservabil-
ity of a firm’s underlying value. Having distinguished between fundamental
and parameter risk, and between priced and unpriced risk, I should draw one
further distinction between the exogenous risks facing investors and the risk

3 It should be pointed out that the behavioral story advanced by DMS does not rely on this
interpretation, and instead views dispersion more literally as a measure of heterogeneity of beliefs.
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characteristics that emerge endogenously in the prices of traded claims. It is
not yet clear, for example, whether one should expect firms with high forecast
dispersion to therefore have high stock price volatility. Determining that rela-
tionship and deducing the connection between dispersion and expected returns
requires a full valuation model, which is the subject of the next section.

II. The Model

The model I will use embeds a simple valuation framework in an environment
of partial information. I first describe that environment, and then deduce the
dynamics of asset prices. Finally I present some numerical illustrations that
verify that reasonable parameter values produce reasonable effects.

A. Information

Consider a single firm whose true value is an unobservable diffusion process.
(The meaning of true value will be defined below.) There are N distinct signals
of this process available to investors, which intuitively correspond to the output
of separate research analysts. Formally, let the value process be Vt and the nth

signal be U (n)
t . Then the specification I assume is

dVt/Vt = ε dt + σV dW V
t ,

U (n)
t = Vteη

(n)
t ,

where ε, the expected earnings rate per unit V, is known, and η
(n)
t , the nth noise

process, is unobservable. Let ε̄ ≡ (ε − (1/2)σ 2
V ). Then, in logs,

dvt = ε̄ dt + σV dW V
t , (1)

du(n)
t = dvt + dη(n)

t , (2)

dη(n)
t = −κη(n)

t dt + ση dW η(n)

t . (3)

Here investors observe the (log) level of fundamentals corrupted by stationary
noise processes, or equivalently, they see N cointegrated signals of the true level
that they care about.4 Since Vt and U (n)

t are levels, dvt can be thought of as the

4 Filtering problems are often written in terms of unobserved growth rates of an observable
process (rather than a level). The current problem can be equivalently expressed in that form as
well. If we define the drift of ut (supressing the superscript) as µt, then

µt = ε̄ − κ(ut − vt ).

Hence the system can be written

dµt = κ(ε̄ − µt ) dt + ση d W η
t ,

dut = µt dt + σU d W U
t ,

with σ U dWU ≡ σ V dWV + ση dW η. Inferences about vt can then be made indirectly from infer-
ences about µt because vt = ut + (µt − ε̄)/κ.
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instantaneous earnings over dt and du(n)
t as the nth analyst’s time-t estimate of

this earnings rate. (While I sometimes refer to these estimates as “forecasts,”
in fact, analyst estimates for the “current” fiscal period do pertain to a contem-
poraneous time interval.) How exactly analysts arrive at these numbers is not
modeled here.

Agents, of course, will aggregate the information in all the signals in making
inferences about V. For present purposes there is not much insight to be gained
by keeping track of N of them. But the point to note is that when there are
multiple analysts, the parameter ση will control the dispersion observed across
their forecasts. (That dispersion will actually equal ση in the special case that
the N processes W η(n)

t are independent.) In thinking about a cross section of
firms then, the interpretation I have in mind is that this is the dimension along
which they differ. More realistically, the correlation structure across signals and
the mean reversion parameter κ would also be expected to differ. And these too
contribute to the total parameter risk (as will be shown below). So, even within
this model, forecast dispersion is not a perfect proxy for information quality.
But, having made the connection explicit, I will now drop the superscript and
analyze the case of a single scalar signal Ut that can be thought of, without loss
of generality, as the aggregate information available to investors.

Investors will also be assumed to know the variances and covariances of all
the processes. Most importantly, they know the true fundamental volatility σV ,
even though the observation process Ut may be more or less volatile than Vt. In
real life, perhaps, companies might try to smooth earnings by arranging for a
negative correlation between W η

t and WV
t (i.e., issuing positive disinformation

dW η when the true shock dWV is negative and vice versa). But this will not
fool investors about true risks, and hence this correlation ends up having no
interesting effects. Where it simplifies the exposition, I will set it to zero, which
is thus also essentially without loss of generality.

In addition to the signal, investors can also observe the aggregate state of
the economy as summarized by the stochastic discount factor process 	t that
obeys

d	t/	t = −r dt + σ	 dW 	
t ,

where r is the (known, constant) risk-free rate. This process conveys some infor-
mation about the unobservable earnings because earnings have a systematic
component: dW V is correlated with dW 	.

It also streamlines some of the formulas if the signal noise dW η is not cor-
related with dW	, meaning that η is entirely unsystematic. And, although I
stated above that it would be important for the argument that parameter risk
be unpriced, it turns out in the current model not to be necessary to restrict the
	–η correlation to achieve the desired result. I will return to this below. Again,
the intuition is just that, when investors know the true riskiness of the true
value, they do not get confused if there is some systematic component of the
distortion in their news sources.
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That completes the description of the informational setting. Investors have
two Gaussian sources of information (the processes ut and log 	t) about a third
Gaussian process. Standard filtering results (e.g., Lipster and Shiryaev (1977),
Theorem 12.7) can now be applied to deduce their posterior beliefs about vt
given the history of these signals and given their prior beliefs. If their prior dis-
tribution is Gaussian, then their posterior distribution will always be Gaussian
as well, and so can be summarized by the posterior mean and variance, denoted
m̃t and ω̃t . The latter evolves deterministically and converges to a steady-state
value ω̃. The former is a stochastic process that evolves according to

dm̃t = ε̄ dt + h̃td W̃ t , (4)

where W̃ t is a scalar Brownian motion process summarizing the information
in U and 	 about V, and h̃t is another deterministic process that converges to
σV in the steady state. (Explicit expressions for ω̃t , h̃t , and W̃ t are given in the
Appendix.) Since the theory developed here has nothing much to say about prior
information, I will assume from now on that enough time has elapsed for ω̃t
and h̃t to have converged to their long-run values. In that case, investors’ beliefs
are summarized by the single state variable m̃t , the conditional expectation of
vt = log Vt.

Below I will also use the fact that time-t beliefs about future values vT for
any T ≥ t are also Gaussian. Indeed, since Ẽt[vT ] = Ẽt[ẼT [vT ]] = Ẽt[m̃T ] and
similarly Ẽt[v2

T ] == Ẽt[ω̃ + m2
T ] (where Ẽt denotes expectation with respect to

investors’ time-t information), conditional beliefs at t about vT are distributed
as

N
(
m̃t + ε̄τ, ω̃ + σ 2

V τ
)
, (5)

where τ ≡ (T − t). This follows from (4) and the assumption that h̃t has con-
verged to σV .

The only other quantities that will be needed are the correlations under the
investors’ information set between the exogenous processes dWU

t and dW	
t and

the innovations process d W̃ t . If dWV
t has correlation ρV	 with dW	

t and cor-
relation ρVU with dWU

t ,5 then the important result is that dW̃ t inherits these
same correlations. In particular, this means dm̃t has the same amount of sys-
tematic risk, ρV	σV , as does the fundamental value process dVt. This fact does
not require that the noise dηt be orthogonal to either dVt or d	t.

B. Asset Prices and Expected Returns

The process Vt described above as “fundamental value” is neither fundamen-
tal nor valuable until it is given economic content by connecting it to some cash
flows. The most straightforward way to do this is to imagine that VT is paid

5 The scalar Brownian motion dWU
t (which I did not define above) is implicitly defined (along

with σU) by σU dWU
t = ση dW η

t + σV dWV
t . This is where it becomes convenient to take η orthogonal

to V. Then σ 2
U = σ 2

η + σ 2
V and ρVU = σV/σU .
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out to the owners of V at some future date T (via a liquidation or takeover, for
example). This means introducing a somewhat artificial new parameter, but
has the virtue of yielding closed-form solutions for all the quantities of interest.

Moreover, with a finite horizon it becomes just as straightforward to value
levered claims to the payoff VT and risky debt secured by VT along the lines of
the classic Merton (1974) model. It turns out this is not merely a gratuitous gen-
eralization. The presence of debt has crucial implications for the relationship
between parameter risk and expected returns.

To start, though, consider the price St of an unlevered claim to VT. By the
definition of the stochastic discount factor, this is

Ẽt[VT 	T ]/	t .

Given investors’ time-t information, VT is conditionally log-normal according to
equation (5) above. Since 	T is also log-normal, the above expectation evaluates
to

St = e−rτ em̃t+(1/2)ω̃e(ε+ρV 	σV σ	)τ . (6)

In a recent article, Pástor and Veronesi (2003) use a similar model of parame-
ter risk to derive an expression analogous to (6). As they point out, the presence
of parameter risk serves to raise stock prices, as can be seen here from the pres-
ence of the ω̃ term. However, this is entirely a static effect. It has no impact at
all on expected returns, which can be seen by applying Itô’s lemma to (6) and
using the characterization of dm̃t in (4) to get

dSt/St = (r + π ) dt + σV dW̃ t , (7)

where π ≡ −ρV	σV σ	 is the risk premium.
In this model, since investors’ information about v is summarized by its condi-

tional expectation m̃ that inherits v’s covariances, the risk premium and volatil-
ity of S are just those that stem from fundamentals. Parameter risk affects
neither.

Interestingly, this conclusion is not driven by the assumption that the noise
process η is idiosyncratic. Both (6) and (7) are correct in the general case. In-
stead, what is important is how the parameter risk generated by η is resolved.
Here it is resolved all at once when VT is paid out (and hence revealed). This
will result in ST jumping to VT at the final instant (and note that (7) is valid
only for t < T prior to the jump). But the key observation is that the jump is
necessarily unpriced because of the assumption that the stochastic discount
factor is a diffusion.

Notice that here the time T is actually playing two distinct roles: It is the
time when both cash flows are realized and parameter uncertainty is resolved.
A natural generalization would envision separation of these roles, with peri-
odic reporting (perhaps noisy) of V at some sequence of dates, and cash flows
(dividends) at another sequence. In this case, the stock price would follow a
jump-diffusion and the degree of parameter risk would certainly contribute to
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the time-series variability of returns. There would still be no expected return
effect, however, unless marginal utility could also jump at the reporting dates.6

Now consider a levered firm. Let K be the face amount of zero-coupon debt
secured by VT payable at T. Evaluating the price of the residual equity claim,
Pt, by direct integration yields the familiar form

Pt = St�(d1) − e−rτ K �(d1), (8)

where �(·) is the cumulative normal distribution function,

d1 = log(St/e−rτ K ) + σ̃ 2/2
σ̃

,

d2 = log(St/e−rτ K ) − σ̃ 2/2
σ̃

,

and
σ̃ 2 = ω̃ + σ 2

V τ.

This is of course exactly the Merton (1974) model, except for one thing. The
variance that matters, σ̃ 2, is not just the cumulative time-series variability of
V (or S ) but includes the parameter risk as well.7

Again applying Itô’s lemma, the dynamics of Pt are

d Pt/Pt = (r + πδSt/Pt) dt + (σV δSt/Pt) dW̃t , (9)

where δ ≡ �′(d1) = ∂P/∂S as usual.
When the firm has debt, its expected excess return changes in an important

way. The risk premium π of the equivalent unlevered firm8 is amplified by a
gearing factor δSt/Pt reflecting the effective exposure to V (or S ) per dollar of
P. While this is a well-known result from elementary options pricing, perhaps
less well known is the fact that this multiplier is decreasing in volatility.9 This
has the startling implication that raising the uncertainty about the underlying
asset value of a levered firm while holding the asset risk premium constant—
that is, adding idiosyncratic risk—lowers its expected returns. More unpriced
risk raises the option value of the claim, which lowers its exposure to priced
risk.

This observation is the heart of the paper. And it shows that the central
hypothesis that explains the dispersion anomaly in returns is that dispersion
is a measure of idiosyncratic risk. The information story I proposed is one way
of delineating why it might be such a measure. But any other way of achieving

6 This reasoning suggests that the strategy of attempting to bury bad news by reporting it on
busy days is completely misguided. Investors will only want compensation for the information
uncertainty if bad news might come on bad (aggregate) days.

7 These results generalize in a straightforward way to the interesting case where both assets (V)
and liabilities (K) evolve stochastically. The form of (8) will be the same, in analogy to the formula
for an option to exchange one asset for another.

8 Note that the unlevered claim St does not actually have to be a traded asset.
9 The proof of this is simply a matter of calculus. So I will omit it.
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that linkage will also account for the findings of Diether, Malloy, and Scherbina
(2002).

Here unobservability of fundamentals (quantified by ω̃) raises uncertainty
about the final payoff without raising the risk premium. Notice, again, that
what is required to make this work is that the resolution of the uncertainty (via
the terminal cash flow) is nonsystematic. How the uncertainty arises does not
matter. This is why η can be arbitrarily correlated with 	 without affecting the
results. In the previous section, I indicated that having idiosyncratic parameter
risk was in some sense essential to the argument. I can now be more precise:
It is the parameter risk component of cash-flows that must be idiosyncratic to
deliver the expected return effect.

The result that the risk premium amplification term declines with ω̃ will be
illustrated below, and its sensitivity to parameter values explored. But before
turning to the computations, there is one crucial feature of this result that is
already apparent: The effect vanishes if the firm has no debt. When K = 0 then
P = S, and from (7), ω̃ has no effect on expected returns. More generally, as
K increases (for fixed m̃ or S ), P becomes more option-like and its sensitivity
to uncertainty rises, which means the dampening effect of dispersion on priced
risk will be stronger. (This will also be illustrated below.) Here, then, is the major
empirical implication of the theory. If the story is right, the effect reported by
DMS should increase with leverage. Other things being equal, firms with less
debt should exhibit less sensitivity of expected returns to forecast dispersion.
Testing this assertion is the subject of Section III. Notice, for now, that there is
nothing analogous to this effect in the behavioral short-sales-constraint story.
So this prediction sharply distinguishes the two explanations.

C. Magnitude of the Effects

To explore the magnitude of the expected return effects in the model, I first
compute the risk premium term δSt/Pt in (9) for various values of the firm-level
parameters. Throughout I fix the risk-free rate at r = 0.04 and the volatility of
the pricing kernel at σ	 = 0.5.

In Figure 1 the value of the unlevered claim to V is fixed10 at S = 100 and the
volatility of fundamentals is σV = 0.2. I choose the correlation ρV	 to imply a
risk premium for the unlevered firm of 0.05. The four panels of the graph show
the levered risk premium for different values of the time horizon T as the level
of debt K and the amount of parameter uncertainty ω̃1/2 vary.

With any of these horizons, the model effects are large. For fixed values of
ω̃, expected excess returns rise steeply with leverage, as one would expect. The
unexpected relationship is along the other axis. For a fixed debt level of 60 (say),
an increase in uncertainty about log V from 20% to 70% lowers expected returns
by between 2% and 8%, depending on T. DMS report a return differential of
about 80 basis points a month between the first and fifth quintile portfolios

10 Fixing S while varying other parameters is equivalent to varying the conditional expectation
m̃ in an appropriate fashion.
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Figure 1. Risk premium for the levered firm. The figures show the expected excess return for
a levered firm under the model of Section II. The different panels correspond to different choices of
the cash-flow horizon T. The firm has a value of S = 100 and an unlevered expected excess return
of 0.05. Face value of debt K varies along the left axis and the amount of parameter uncertainty
ω̃1/2 varies along the right axis.

formed according to dispersion ranking. The theory here can easily generate
differences of this magnitude. That a fully rational model with unexceptional
parameter values can produce a strongly negative relationship between risk (of
a particular type) and reward is remarkable.
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The plots also vividly illustrate the main testable implication mentioned
above: The effect of parameter uncertainty declines with debt. For an unlevered
firm there is no ω̃ sensitivity at all, implying that dispersion of beliefs should
not affect expected returns. For firms closer to nominal insolvency, on the other
hand, the effect can be extreme. The empirical work in the next section will
thus focus on the sign of the cross second derivative.

One question the figure cannot address is what the range of values of param-
eter uncertainty is likely to be in practice. This matters because if reasonable
information parameters cannot produce much variation in ω̃, then it is unlikely
that the model’s effects are responsible for the variation in expected returns in
the data. Likewise, it might be impossible to detect the hypothesized leverage
interaction, unless in reality, firms do exhibit wide enough variation in param-
eter uncertainty.

Under the model, the steady-state posterior standard deviation ω̃1/2 is de-
termined by three factors. First, the informativeness of the joint observation
(dU, d	) is governed by their correlations with dV. Second, these signals are
redundant, and so are less informative together, to the extent that they are
correlated with each other. Third, the level of the signal U is informative about
V because the two are cointegrated (unlike V and 	). The parameter govern-
ing the strength of this relation is κ, which can be interpreted as the decay
rate of the error innovations dη. Equivalently, the half-life of these shocks is
log 2/κ. So if κ is large, U never wanders very far from V and inferences about
fundamental value are easier to make.

To make things simple, I now will assume that η is uncorrelated with 	 and
V. As discussed in Section II.A above, there is essentially no loss in generality
in doing this, and it boils the covariance structure down to a single parameter
ρVU = σV/σU or equivalently ρηU = ση/σU =

√
(1 − ρ2

V U ). Fixing the fundamen-
tal volatility σV at 0.2 as before, these correlations are then determined by the
error volatility ση, which is a more intuitive quantity. Figure 2 plots the long-
run level of uncertainty ω̃1/2 as a function of ση and the error half-life log 2/κ.
Recall that ση is the variable that would directly correspond to dispersion of
analyst estimates under the multiple-signal interpretation. In the IBES data,
it is not at all unusual to see analyst disagreements of over 50% or to see com-
plete consensus (dispersion equal to zero). So the range of ση plotted seems
realistic. For the other axis, one could perhaps interpret this half-life as the
average length of time that analysts (and others) can be persistently wrong
about a company’s underlying financial picture. For the most transparent and
forthcoming firms, this might be only a few months (e.g., between quarterly
reports). At the other end of the spectrum, it is not at all hard (these days) to
find examples of companies that have successfully misled investors for years.

As the figure shows, these ranges of parameters imply a long-run level of
uncertainty about fundamental value of between 0% and 70% or so, which
confirms that reasonable assumptions about information can produce a broad
range along this dimension. In this context, I am reminded of Fischer Black’s
(1986) dictum that the stock market in general is probably “efficient” to within
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Figure 2. Determinants of parameter uncertainty. The figure shows the steady-state level of
posterior standard deviation of beliefs, ω̃1/2, about log fundamental value as a function of the size
and persistence of shocks to the noise process ηt. The size of shocks is measured by ση and their
persistence by the half-life log 2/κ. The plot assumes that η is uncorrelated with both the stochastic
discount factor and the fundamental value process. See the appendix for the full expression.

a factor of 2. Interpreting this as a statement about the standard deviation of
beliefs about fundamental values, a factor of 2 corresponds on a log scale to
ω̃1/2 ≈ 0.7, which again suggests that the model is implying plausible levels of
uncertainty.

This section has established that when firms have risky debt in their capital
structure, their stock returns should be expected to decline as uncertainty about
fundamentals increases. Furthermore, when that uncertainty is generated by
a noisy-signal model with reasonable parameter values, the magnitude of the
effects is easily large (and variable) enough to account for the patterns in the
data. I now ask whether the theory can go beyond the anomalous patterns it
was designed to explain and survive the test of its own new predictions.

III. Empirical Evidence

Suppose dispersion of analysts’ beliefs is not systematically related across
stocks to the fundamental systematic risk of underlying assets. In terms of
the model’s notation, this means that ρ

(i)
V	

σ
(i)
V does not covary with σ (i)

η or ω̃(i)

as i ranges across firms. In that case, the theory developed in the previous
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section for a single firm also implies that variation in dispersion across firms
will, holding other things equal, also be associated with variation in expected
returns because of the presence of debt in most firms’ capital structure. For
this to be a valid explanation of the findings of Diether, Malloy, and Scherbina
(2002), it must be that the strength of this association increases in leverage. I
now test this proposition empirically.

I follow the cross-sectional literature by implementing this test using stan-
dard Fama and MacBeth (1973) regressions. The main hypothesis then boils
down to the assertion that the coefficient on an interaction term (i.e., the prod-
uct) between a dispersion proxy and a leverage proxy ought to be significant
and negative. Taken literally, the model offers an explicit nonlinear expression
for expected returns for each firm. But the simplest specification captures the
essence of the model’s insight without leaning too heavily on the overstylized
framework. Indeed, a glance at Figure 1 suggests that a formulation along the
lines of

a + b · leverage · (c − dispersion)

(with b, and c > 0) should well approximate the full model’s expected return
function. This approximation also points to a second prediction of the model: The
dispersion effect should not enter on its own in the presence of the interaction
term. In terms of economic intuition, this just captures the restriction that there
should be no role for parameter risk when firms have no debt.

I carry out the test using the intersection of the CRSP, COMPUSTAT, and
IBES universes for every month from January 1983 to December 2001.11 The
main econometric challenges are constructing meaningful proxies and holding
other things equal.

My primary proxy for leverage will be book value of debt over the sum of
book value of debt and market value of equity, which I call L. Later I will
also construct a measure closer to the quantity that actually enters my model:
face value of debt over total firm market value. This involves a model-based
adjustment to book debt since debt market values are unavailable. Neither
measure captures off-balance-sheet contributions to leverage, such as pension
liabilities and derivative obligations.

My proxy for dispersion of beliefs is essentially the same as that used by DMS:
the month-end standard deviation of current-fiscal-year earnings estimates
across analysts tracked by IBES. The number and quality of analysts varies
across firms. But DMS show that the expected return effects are not sensitive
to the inclusion of controls for this heterogeneity. Those authors do document an
important truncation bias in the standard deviation as computed by IBES. So
accurate numbers must be recomputed from the detailed history of individual

11 Overall these tend to be relatively large firms with above average past performance. A detailed
discussion of the sample properties (and summary statistics) can be found in Diether, Malloy, and
Scherbina (2002).
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Figure 3. Raw dispersion measures. The figures show histograms of the normalized dispersion
measures DISP1 and DISP2 for December 2000. The measure DISP1 is the standard deviation of
analyst earnings estimates for the current fiscal year divided by the mean of the same estimates.
The measure DISP2 normalizes instead by the most recently reported book value of assets.

forecasts. I use only the latest forecast made by each analyst, and I eliminate
forecasts that are over 6 months old or that pertain to fiscal periods that have
already ended.12 DMS normalize each stock’s standard deviation by the mean
of the estimates, throwing out firm-months where this denominator is zero. I
call this measure DISP1. Since this sacrifices some valid data and artificially
inflates observations near zero, I also compute a measure, DISP2, that instead
normalizes by book value of assets. This scaling more accurately represents the
quantity dV/V that the model describes.

Figure 3 shows a histogram of these two measures for a typical month. Both
measures display extreme right skewness. (Notice the log scale on the vertical
axis.) This is problematic for two reasons. First, there is the general danger
that outliers will distort OLS estimates. And second, for the particular specifi-
cation at hand, it will give the regressions very low power to detect interaction
effects. This is because the outliers all lie in the direction (high dispersion) for
which the model expected return surfaces flatten out and the cross-derivative

12 I make no further adjustment for the obvious seasonality in dispersion: There is much less
room for disagreement about “current” year earnings when, for instance, three of four quarters’
results have already been reported. However, I did repeat the tests below after dividing dispersion
by the square root of the length of time remaining to the end of the fiscal period. Results were
unaffected.
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Table I
Return Regressions

The table shows results from monthly Fama–MacBeth regressions of returns on measures of analyst
forecast dispersion and leverage, and their product. The variable DISP1 is the standard deviation
of current-fiscal-year forecasts divided by the mean of the forecasts. The variable DISP2 is the
standard deviation divided by the firm’s most recently reported asset value. Both measures are
transformed into percentile rank form. The leverage measure L is the most recently reported book
value of debt divided by the sum of that debt and the month-end market value of equity. The data
are monthly observations from January 1983 through December 2001. The rightmost column is
the arithmetic average of the R2’s of the individual regressions. The t-statistics are in parentheses.

Independent
Variables Dispersion Leverage Interaction R2

DISP1, L −0.0059 0.42
(2.46)

−0.0058 0.0049 1.44
(2.68) (1.24)

−0.0041 0.0071 −0.0044 1.53
(1.44) (2.23) (1.19)

0.0103 −0.0113 1.33
(2.19) (3.28)

DISP2, L −0.0035 0.65
(1.09)

−0.0027 0.0035 1.82
(1.09) (0.79)
0.0017 0.0089 −0.0124 2.00

(0.60) (2.32) (2.27)
0.0074 −0.0097 1.80

(1.45) (2.02)

diminishes.13 I deal with this by transforming both dispersion measures into
percentile ranks. Besides being more robust, this fits the data better, signifi-
cantly increasing the R2’s in all cases. It also enables one to interpret the regres-
sion coefficients in terms of the performance of portfolios sorted by dispersion.

The basic results are shown in Table I. The top panel uses DISP1 and the
bottom panel uses DISP2. With either measure, the main implications of the
model are well supported. In the presence of the interaction term, there is
no significant dispersion effect. The interaction coefficient itself is negative
and significant (except in one specification). Finally, the leverage coefficient is
positive and significant, as the model implies it should be.14 In all, this is a
striking collection of successes for the model. The interaction test especially—
being purely motivated by theory, previously unexamined, and not obviously

13 To see this another way, think of the model again as a + b · leverage · (c − dispersion). Fitting
this with extremely large dispersion values requires taking c large to keep the leverage effect
positive. But this forces b to be small to keep the leverage effect from being extreme for small levels
of dispersion, where most of the observations are.

14 All reported t-statistics are adjusted for heteroskedasticity and autocorrelation. The choice of
lag length in estimating the covariance matrix of coefficients has no effect on any of the conclusions.
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Table II
Return Regressions with Expected Return Controls

The table shows results from monthly Fama–MacBeth regressions of returns on measures of analyst
forecast dispersion and leverage, and their product, as well as on controls for expected return of
underlying assets. The variable SZ denotes log market value of equity; BM is log of the ratio of
book equity to market value of equity; R12 is the total stock return over the 11 months preceding
the previous month; and DISP1, DISP2, and L are described in the caption to Table I. The bottom
two specifications employ versions of these variables that have been orthogonalized (via a pooled
regression) with respect to the expected return controls. The data are monthly observations from
January 1983 through December 2001. The rightmost column is the arithmetic average of the R2’s
of the individual regressions. The t-statistics are in parentheses.

Independent Variables Dispersion Leverage Interaction R2

DISP1, L, −0.0004 0.0031 −0.0090 4.41
SZ, BM, R12 (0.13) (0.85) (2.36)

DISP2, L, 0.0028 0.0034 −0.0131 4.46
SZ, BM, R12 (0.98) (0.90) (2.70)

Orthogonalized DISP1, L, −0.0038 0.0024 −0.0074 4.38
SZ, BM, R12 (1.82) (0.68) (2.00)

Orthogonalized DISP2, L, −0.0022 0.0036 −0.0124 4.39
SZ, BM, R12 (1.01) (0.98) (2.70)

explainable by alternative theories—provides strong evidence in support of the
basic insight behind the theory.

Examining the coefficients in terms of economic significance, the estimates
imply that a low dispersion firm (10th percentile) with high leverage (90%)
would outperform a high dispersion one (90th percentile) with low leverage
(10%) by between 60 and 90 basis points per month. Firms with no debt have
essentially the same expected return whether they are in the 99th dispersion
percentile or the first. These numbers suggest that the model’s consequences
may be of practical as well as theoretical importance.

The specifications in Table I are unconditional however, and these initial con-
clusions could be sensitive to cross-sectional variation in the underlying firm pa-
rameters. Most important among these is the asset risk premium π (cf. equation
(7)), which would characterize firm returns in the absence of debt. The model’s
predictions apply to the incremental effects of debt and dispersion with this
fundamental expected return premium held fixed. I now try to control for pos-
sible cross-sectional differences in it. As the introduction noted, the theory here
offers no new suggestions about how to identify the sources of fundamental risk
that would drive these differences. So, in Table II, I simply introduce the stan-
dard controls: size, book-to-market ratio, and momentum.15 The top two lines

15 Using the book-to-market ratio as a proxy for fundamental risk in this context is a debatable
call, because under the model, this ratio is also a function of leverage and parameter risk. The
treatment here is traditional and facilitates comparison with the existing literature. However, it
is worth pointing out that the model implies a positive role for book-to-market even if it has no
relation to systematic risk. Holding systematic risk fixed, a lower ratio means higher idiosyncratic
risk and hence—just as with dispersion—lower expected returns. Hecht (2002), in a cross-sectional
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indicate that doing this does not affect the original findings. With either mea-
sure of dispersion, the interaction term is actually strengthened (more negative)
and the dispersion term alone remains insignificant. The leverage coefficients
are still positive but somewhat diminished. This is due to the strong association
between leverage and book-to-market. The latter absorbs most of the explana-
tory power of the former, as noted by Fama and French (1992), and becomes
highly significant in these specifications.

The next two rows of the table take the controls one step further by applying
a two-step procedure that first orthogonalizes both leverage and dispersion
with respect to the expected return proxies.16 If leverage and dispersion are
themselves endogenous quantities, influenced in part by the the cost of capital
(risk premium) of the underlying business, then the estimated coefficients from
the original regressions might still be distorted by the dual role the proxies are
playing. The table shows, however, that this does not appear to be a concern.
The estimated coefficients are little changed.

The other important parameter in the model not controlled for so far is the
volatility of the underlying asset value, σV . Here there are also reasons for
concern. As with the underlying risk premium, it is certainly plausible that
this measure of risk covaries in the cross section with dispersion or leverage or
both. And, again, endogeneity of leverage (and possibly of dispersion) clearly
matters since riskiness of assets is undoubtedly a major determinant of the
amount of debt firms take on. A new complication, also, is that leverage in turn
influences stock volatility, which is the most tangible way of getting at asset
risk. So, as a first step in controlling for variation in σV , I attempt to unlever
the equity volatility estimated each month from CRSP returns. Then I follow
the same steps as above: I include the control itself in the return regressions,
and also orthogonalize the dispersion and leverage proxies with respect to it
(along with all the earlier controls), and then use the residuals in place of the
original variables.

Table III shows the results.17 The first two regressions employ a crude de-
leveraging that sets σ̂V = σ̂P (1 − L). The bottom two regressions employ the
model’s own dynamic relation between these two volatilities to solve for σV .
This procedure requires simultaneously solving for the model’s leverage ratio,
M ≡ e−r τ K/S, which I interpret as the face value of debt over market value of
assets.18 So for consistency I use this measure in the regressions as well.

Either way, the previous findings are upheld. There is no significant dis-
persion effect independent of leverage, and the interaction is significant and

study of total firm returns that effectively strips out the influence of leverage, finds that most of
the book-to-market effect does in fact vanish, and concludes that the ratio’s apparent influence on
returns must stem from capital structure effects. The model here provides a formal explanation
for exactly how these capital structure effects might work.

16 This is carried out by a single pooled regression.
17 Here I only show the results for DISP2 for brevity. The findings are the same with DISP1.
18 To solve for the volatility and market value of the firm, the model requires a time horizon, T,

and a risk-free rate r. I used 4 years and 4% for these, but the results are not sensitive to these
choices. Details are available from the author upon request.



Forecast Dispersion and the Cross Section of Expected Returns 1975

Table III
Return Regressions with Expected Return and Volatility Controls

The table shows results from monthly Fama–MacBeth regressions of returns on measures of analyst
forecast dispersion and leverage and their product, as well as on controls for expected return and
volatility of underlying assets. The variable σ̂P is the prior month standard deviation of daily stock
returns; σ̂V and M are the implicit model values of asset volatility and leverage, respectively, (the
latter defined as present value of debt over firm market value) that simultaneously match the
observed market value of equity and equity return volatility. The orthogonalized variables are
residuals from a first-stage pooled regression on the controls. The variables SZ, BM, and R12 are
described in the caption to Table II. The variables DISP1, DISP2, and L are described in the caption
to Table I. The data are monthly observations from January 1983 through December 2001. The
rightmost column is the arithmetic average of the R2’s of the individual regressions. The t-statistics
are in parentheses.

Independent Variables Dispersion Leverage Interaction R2

DISP2, L, 0.0038 −0.0039 −0.0143 5.28
SZ , BM , R12, σ̂P (1 − L) (1.61) (1.24) (2.96)

Orthogonalized DISP2, L, −0.0017 −0.0018 −0.0175 5.22
SZ , BM , R12, σ̂P (1 − L) (0.38) (0.51) (3.00)

DISP2, M, 0.0029 −0.0008 −0.0100 5.32
SZ , BM , R12, σ̂V (1.29) (0.35) (2.70)

Orthogonalized DISP2, M, −0.0013 −0.0017 −0.0082 5.28
SZ , BM , R12, σ̂V (0.70) (0.81) (2.26)

negative. These specifications show no separate role for leverage, which, as
above, is not inconsistent with the model. The book-to-market ratio is picking
up the role of debt while also proxying for the positive role of other model pa-
rameters.19 It seems safe to conclude, at this point, that the initial success of
the theoretical predictions was not due to any confounding cross-sectional cor-
relation between the main proxies and other factors influencing equity’s risk
and return.

To summarize, this section has documented a new significant feature of the
cross section of expected returns: a negative interaction effect between leverage
and dispersion of beliefs. Rather than presenting a new puzzle, however, this
pattern was predicted by a simple classical model of information and risky
debt. That model, in turn, accounts for the original puzzle of a negative effect of
dispersion alone. The results serve as a reminder of the complex and important
role played by capital structure in continuously altering the exposure of equity
to the underlying risks of a firm’s business.

IV. Concluding Remarks

One of the most intriguing aspects of the original phenomenon reported by
Diether, Malloy, and Scherbina (2002) is the suggestion that, to the extent that

19 Another interpretation of the role of B/M, suggested by Brennan, Wang, and Xia (2002), is as
a control for the duration of cash-flows, which is T here. As such, it would also be expected to enter
positively: Longer duration (lower B/M) means higher option value and lower expected returns (see
footnote 15 above).
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dispersion of earnings expectations is under the control of firms themselves,
they might actually benefit, via a lower cost of equity capital, by increasing
disagreement. Or, at the very least, the finding casts strong doubt on the notion
that transparent disclosures and timely earnings guidance are in a firm’s own
best interests. The results of this paper not only support these impressions, but
also offer a straightforward explanation. For levered firms, adding idiosyncratic
uncertainty about cash flows increases the option value of equity. In fact, the
situation is exactly analogous to the so-called asset substitution agency problem
in corporate finance, except that here a separate—and much simpler—channel
is involved. No assets need be substituted to achieve the desired result. All that
is required is obfuscation.

Does this happen? In a sense, the thesis of this paper is that it should, at
least when firms have debt. And this prediction is also supported in additional
regressions reported by DMS. High (book) leverage and poor past performance
are associated with higher dispersion in the cross section, suggesting that firms
with higher incentives to dissemble may in fact do so. This interpretation is
bolstered by the surprising fact that high book-to-market ratios also entail
higher dispersion. One might have expected the reverse: that dispersion might
be higher for firms with more intangible value. Instead distressed firms are
more prone to analyst disagreement despite their smaller intangible compo-
nent. It seems plausible that this is due, at least in part, to a deliberate re-
sponse of managers to bad news. The model here offers a rationale for such
behavior.

Understanding the complete game determining the amount and accuracy of
information reported by managers is a topic of enormous current interest and
importance. This paper has only attempted to model the asset pricing conse-
quences of an exogenous information setting. Still, it demonstrates that this
is a crucial facet of the problem that yields some striking implications. More-
over, there appears to be compelling empirical support for its basic linkage be-
tween leverage and uncertainty about fundamentals in determining expected
returns.

Appendix: Filtering Equations

This appendix provides explicit representations for the endogenous quanti-
ties that arise in the filtering problem of Section II.A.

To start, write the complete system of state, vt, and observation, (ut, λt) ≡
(log Ut, log 	t), evolution as

dvt = ε̄ dt + σV d W V
t ,

dut = ε̄ − κ(ut − vt) dt + σU dW U
t ,

dλ = −r̄ dt + σ	d W 	
t ,

where r̄ ≡ (r + (1/2)σ 2
	) and σU dWU ≡ σV dWV + ση dW η. Notice that the sec-

ond line uses η = u − v to eliminate any explicit reference to the noise process.



Forecast Dispersion and the Cross Section of Expected Returns 1977

Let � be the covariance matrix between the two observable processes. That
is,

� =
[

σ 2
U σU	

σU	 σ 2
	

]
.

When the error component of the signal, η, is assumed to be orthogonal to both
V and 	, then σU	 is also equal to ρV	σVσ	. Let �−1/2 denote any matrix square
root of �.

Now define the bivariate innovation process dŴ t to be

dŴ t = �−1/2

[
dut − Ẽt[dut]

dλt − Ẽt[dλt]

]
.

Then the results of Section 12.3 in Liptser and Shiryaev (1977) imply that
dŴ t is a standard Brownian motion, and that the conditional expectation m̃t ≡
Ẽt[vt] evolves according to

dm̃t = ε̄ dt + ĥ′
t dŴ t ,

where ĥt is given by

ĥt = �−1/2
[

σV U + κω̃t
σV 	

]
.

This vector gives the sensitivity of the conditional expectation to the two sources
of information. The terms σVU and σV	 reflect the known covariances of the
unobservable process with the two types of innovation. The additional term
κω̃t increases the reaction of m̃ to u shocks because v appears in the true
drift of u. Here the intuition is more subtle. Even if shocks to u were un-
correlated with shocks to v, the presence of u in the drift means that some
part of the observed surprise in u (i.e., dut − Ẽt[dut]) will have been due to
misestimation of the true drift. Bayesian updating will then try to improve
estimates of the level of v by exploiting this extra information. Positive sur-
prises probably mean that the drift was underestimated, and so m̃ should
be increased based on the portion of the surprise that was likely due to this
error.

To connect the above vector quantities to the notation used in the text,
note that the scalar processes h̃t and W̃t can be defined implicitly by the
relations

h̃t dW̃t = ĥ′
t dŴ t

and

h̃2
t = ĥ′

t ĥt .



1978 The Journal of Finance

Next, the classical analysis also yields the result that the conditional variance
process ω̃t solves the ordinary differential equation

σ 2
V + d ω̃t

dt
= ĥ′

t ĥt = h̃2(ω̃t).

The steady-state value must solve the time-homogeneous version of this, which
shows that h̃2(ω̃) = σ 2

V , as claimed in the text. Solving explicitly for the limiting
value ω̃ yields

ω̃ = σ 2
V

κ

(
1 − ρ2

V 	

) {√
1 +

(
1 − ρ2

V U

)(
1 − ρ2

V 	

) − 1

}
.

This is the expression plotted in Figure 2. It does use the orthogonality assump-
tions on η, which also imply ρ2

ηV = (ση/σV )2 = (1 − ρ2
VU) (see also footnote 5).
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