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RETURN DYNAMICS WHEN PERSISTENCE IS UNOBSERVABLE

Timothy C. Johnson

London Business School

This paper proposes a new theory of the sources of time-varying second (and higher) moments
in financial time series. The key idea is that fully rational agents must infer the stochastic degree of
persistence of fundamental shocks. Endogenous changes in their uncertainty determine the evolu-
tion of conditional moments of returns. The model accounts for the principal observed features of
volatility dynamics and implies some new ones. Most strikingly, it implies a relationship between
ex post trends, or momentum, and changes in volatility.
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1. INTRODUCTION

Volatility models in finance have grown increasingly sophisticated in recent years.
Spurred by the detailed findings of econometricians and the needs of derivatives practi-
tioners, researchers have proposed specifications that can account for the many complex
patterns observed in realized and expected volatility. With complex specifications, how-
ever, come the dangers of overfitting and parameter instability. Moreover, the empirical
progress has not been matched by a commensurate advance in our understanding of the
underlying causes of heteroscedasticity.1

Motivated by these considerations, this paper seeks to explain volatility changes in
terms of a structural model of economics fundamentals. I derive a theory of heteroscedas-
ticity from a single, simple hypothesis about nature: that some innovations are persistent
and some are transient. I show that this basic property of exogenous fundamentals is
sufficient to generate the observed features of volatility dynamics, and to imply some
new ones.
The outline of the argument is straightforward. Most, if not all, asset pricing models

may be viewed as being driven by expectations of a discounted flow of some exogenous
fundamental quantity. This may be an earnings flow (for pricing a firm’s stock), a money
supply flow (for the nominal price level), or a consumption flow (for an endowment
claim). If shocks to the flow rate differ over time in their degree of stationarity (or
persistence) then investors will vary their reactions to them accordingly: a shock thought
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to have long-term effects will move prices more than one known to be transient. Investors,
however, are not likely to know ex ante the exact temporal duration of an innovation. That
will only become clear over time. Hence, in determining their immediate reaction to a
piece of news, agents must simultaneously solve an inference problem. It is the properties
of that inference, then, as much as those of the exogenous series, which determine the
properties of price variability.
This point was originally made by Barsky and deLong (1993) in the context of the

debate in the finance literature about “excess” stock market volatility. Those authors
observed that a fully rational investor who placed any prior weight of the possibility that
shocks to dividend growth had a permanent component would still hold such a belief
with 100 years of data. As a consequence, rationality would dictate much bigger price
responses to news—a higher level of volatility—than would be deemed correct by an
observer after-the-fact who knew the news to be transient.
The present work extends that logic to the case in which the degree of persistence of

shocks need not be fixed. Instead of having a century to estimate a constant parameter,
agents must contemporaneously estimate the likely long-term impact of current growth
rate changes. Unsurprisingly, their inference problem is never resolved. The parameter
uncertainty is not a transient feature of the economy. Instead it affects return dynamics
at all times.
Endogenous changes in inferences about persistence thus drive changes in return

volatility. GARCH effects—autocorrelation in that volatility—arise for two reasons. First,
uncertainty about persistence of past shocks means that the current growth rate of funda-
mentals is unknown, as it depends on their residual influence. This contributes a slowly
varying component to current volatility. Second, the direct effect mentioned above is
that today’s persistence estimate dictates the price response to today’s news. But recent
persistence carries information about current persistence. Permanent changes are more
likely to follow other permanent changes. So this component of volatility is also posi-
tively autocorrelated.
Describing the optimal inference process becomes involved mathematically. I have

deliberately tried to streamline the economic environment to highlight the role of the
expectational dynamics in asset returns. The simplifications involved are pointed out
when they arise, and generalizations are considered. The basic properties of the solution
are largely robust to the technical specification. The content of the argument is no more
than that outlined above.
It is worthwhile to contrast the modeling approach undertaken here with that of simply

positing a stochastic volatility process for the exogenous fundamentals. If GARCH effects
and other patterns in returns are merely inherited from the underlying information flows
driving them, then there is no need for structural theories.
Certainly there is no reason to rule out this possibility. The difficulty is that it seems

to fail empirically. Little, if any, of the volatility of returns is traceable to identifiable
news (Roll 1984, Cutler, Poterba, and Summers 1989, Berry and Howe 1994). And,
when price moves can be tied to specific events, the impact on volatility appears to be
transient (Jones, Lamont, and Lumsdaine 1995, Andersen and Bollerslev 1997). There are
indeed hints of time-varying information flow from the intriguing contemporaneous co-
movement between volatility and transactions volume (Tauchen and Pitts 1983, Gallant,
Rossi, and Tauchen 1992), but without identification of the news driving both there is no
reason to regard volume as any more exogenous than returns.
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In contrast it is easy to verify, with hindsight, that fundamental innovations differ in
their degree of persistence.2 Changes to interest rates are clearly persistent when due
to policy changes, but otherwise resemble noise. Shocks to a firm’s cash flows may be
one-time “extraordinary items” or may represent enduring changes to its business condi-
tions. This example illustrates, too, the inference problem facing investors: the distinction
between the two types of shocks may be far from obvious. On a macroeconomic level, the
question of the permanence or transience of recent productivity increases in the United
States (whose answer has enormous implications for both markets and policymakers) is
the subject of intense current debate.
In addition to heteroscedastic fundamentals, volatility dynamics may also be influenced

by time-varying investor preferences, microstructural effects, heterogeneous information,
or investor irrationality. Recent research has begun to examine the implication of each
of these. Each still has important shortcomings.
Time-varying marginal utility arguments,3 since they apply to the pricing of all assets,

imply that volatility changes should be fully accounted for by systematic components,
which they are not. It is also difficult to imagine changes in marginal utilities having
much bearing on high frequency patterns.
Microstructural explanations,4 by contrast, seem ill-suited to explaining low frequency

dependencies. Moreover the implication that volatility autocorrelation is a by-product of
the trading process itself would seem to be belied by the similarity of the phenomenon
across a multitude of instruments and exchange mechanisms.
Models based on heterogeneous information or beliefs5 would suggest less volatil-

ity predictability in markets without significant private information (like currencies and
government bonds ) which is not the case.
Finally, behavioral models6 equate volatility persistence with underreaction to news.

The implied linkage between return anomalies and heteroscedasticity has yet to receive
empirical support.
This is not to doubt that all of the elements above apply to one degree or another.

Yet even collectively they are not necessary. The model proposed here gives rise to
conditional heteroscedasticity in an environment of perfect markets, rational expectations,
homoscedastic fundamentals, symmetric information, and risk neutrality.
The approach of this paper is closely related to that of Detemple (1986), Feldman

(1989), Wang (1993), David (1997), and Veronesi (1999). These authors also introduce
inferential uncertainty into asset pricing problems, in the form of an unobservable growth
rate of fundamentals, and thence derive endogenous volatility processes.7 The model
here complements these works in delineating a new type of parameter uncertainty, which
corresponds to a realistic and economically important problem. The dynamics I deduce
include features that are potentially significant and distinct from those previously studied.
These implications are readily testable.

2 Evans (1998) reports support for a generalized switching model of dividend growth rate that includes
significant shifts in persistence between regimes. Evans and Lewis (1995) find evidence of variable persistence
of U.S. interest rate shocks.

3 See Campbell and Cochrane (1999) or Wang (1996).
4 Examples include Andersen (1996), Easly and O’Hara (1992), and Foster and Viswanathan (1990).
5 See Campbell and Hentschel (1992), Wang (1993), and Detemple and Murthy (1994).
6 Barberis, Shleifer, and Vishny (1998) present a model not unlike the one in this paper of changing but

mistaken beliefs about persistence of fundamentals. Models of evolving belief populations that explicitly focus
on volatility include those of Brock and LeBaron (1996) and Lux (1997).

7 A parallel literature treats the consumption/portfolio problem of an investor under parameter uncertainty.
See Honda (1997) and the references therein.
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The outline of the paper is as follows. The next section formalizes the information
problem and derives two characterizations of the solution. Section 3 introduces a styl-
ized asset pricing relation, which makes the role of conditional expectations particularly
transparent. Using this and the solution techniques of Section 2, I derive the system
of equations governing the evolution of return moments and prove a result crucial for
empirical work. Section 4 explores the moment system and derives a theorem on the
relationship between volatility and trends. Numerical examples investigate the robust-
ness of the assumptions of the theorem and some of its extensions. Section 5 contains
some concluding remarks.

2. THE FILTERING PROBLEM

The goal of this section is to formulate and solve the problem of inference about the
degree of persistence of shocks to growth rates. For present purposes, the interpretation
given to the observed series is irrelevant. The immediate task is mathematical.
The problem is easy to frame in discrete time. If Dt is the fundamental economic

series, then the situation is

�Dt = µt + εt+1(2.1)

µt = µt−1 + Stεt ,(2.2)

where εt is white noise and µt , St , and εt are all unobserved. Here St determines the
degree of persistence: When St = 0 the growth rate �Dt is completely stationary but
when St = 1 it switches to a random walk. The problem is to describe the minimum
mean-square estimators (posterior expectations) of µ and S given observations of D.
In fact, it will be necessary to derive the full conditional joint distribution of the

unknown variables. To do so it is easier to work in continuous time. Here the natural
analogy is the system of stochastic differentials

dDt = µtdt + σ0 dWt(2.3)

dµt = σ0St dWt(2.4)

with Wt a Wiener process and St as before. The analogy may be justified formally
by appealing to the Wold representation for the observation process. Using the Fubini
theorem for stochastic integrals (cf. Protter 1990, VI.45), we may write the continuous-
time version as

Dt −D0 = µ0t + σ0

∫ t

0
[1+ Su(t − u)] dWu,

which corresponds exactly to that of the discrete-time system (2.1)–(2.2) with integration
replaced by summation.

remark 2.1. A significant difference between the two systems concerns the mag-
nitude of the long-run effect of a differential shock dWt . In the discrete system, when
St = 1 the full impact of the shock (of order (�t)1/2) is incorporated in all future changes
in D. In the continuous system, such a permanent innovation only alters dDs at times
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s > t via the µsds term, an effect of order only (�t)3/2. This suggests employing a
different scaling factor in (2.4) to allow stronger effects; that is,

dµt = σ1St dWt .(2.5)

Mathematically, this would be identical to having S take values in {0, κ}, where κ ≡
σ1/σ0, instead of {0, 1}. This generalization could well be important empirically. The
results that follow go through with minor changes to some formulas, which I will note
in the proofs. For notational simplicity, however, I use the original formulation in the
main development.

Proceeding formally, the setting that will be used throughout the paper is as follows.
Fix a probability space (�,F, P ) and a filtration (Ft )

T
t=0,F = σ(∪Ft ) satisfying the

usual conditions. On this space define two processes: Wt , a standard Wiener process, and
St a two-state Markov process, independent of Wt , taking values 0 and 1 characterized
by transition parameters λ0 and λ1. That is, the probability of a switch from 0 to 1 in
time �t is λ0�t , and that from 1 to 0 λ1�t . St has the semimartingale representation

dSt = (λ0 − (λ0 + λ1)St ) dt + (1− 2St) dN
λ
t ,(2.6)

where Nλ
t is a compensated Poisson process with intensity λ = λ(S) = λ1S+λ0(1− S).

remark 2.2. The discrete nature of the S process is in no sense fundamental to the
results, as will be shown bellow. The independence of dNλ

t and dW is also easy to
relax, though correlation effects can result in nontrivial differences in the dynamics. The
assumption that is significant, mathematically and economically, is that S is a first-order
Markov process. This is tantamount to the assertion that current persistence conveys
information about future persistence. Without this, S will only be identified (to observers
of D) by the imposition of some other structural assumption. This will fundamentally
change the nature of the system.

Next, let σ0 > 0 be a fixed constant, and define the process µt as the unique (strong)
solution to (2.4) (in conjunction with (2.6)) having initial value µ0 independent of St and
Wt with all moments finite. Last, let D0 be another such independent random variable
and define the process

Dt = D0 +
∫ t

0
µu du+ σ0Wt.(2.7)

The information available to an observer of D will be denoted FD
t ≡ σ(Ds, 0 ≤ s ≤ t).

Conditional expectations with respect to FD
t describe the observer’s minimal mean-

square inferences. This information set is assumed to include full knowledge of the
static parameters describing the transition probabilities of S. (Here that entails knowing
λ0, λ1, and that the two possible values of S are 0 to 1. Some more general processes
for S will be mentioned below.)
It is worth emphasizing, at this point, that the assumption throughout of a known

variance parameter σ0 is without loss of generality from the point of view of filtering.
The reason is that in continuous time the instantaneous volatility of any continuous
process Xt is FX

t measurable. There is no inference to be made. Problems of variance
inference are simply not well posed in this setting. But this is not a drawback here,
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nor is the assumed constancy of σ0 (which is not a technical necessity). The volatility
we wish to study is not that of the fundamental series D, but that of functionals of it
(i.e., returns). One of the major goals of the paper is to illustrate that the complicated
dynamics of the latter are endogenous to the filtering problem and not inherited from the
former.
Readers familiar with filtering problems will recognize some nonstandard features of

the above system. The state space is mixed, having a discrete and a continuous variable.
Problems with this feature have been studied in the systems literature under the heading
hybrid (or jump-linear) systems.8 More peculiarly, there is no distinction between the
“system noise” and the “observation noise”: the same Wiener process drives µt and Dt .
While important results have been obtained for problems containing correlated noises (for
nonjumping systems), some degree of independence is typically required or the problem
becomes degenerate.9

Interestingly, in the current problem this latter degeneracy enables one to identify
explicitly the Radon–Nikodym derivative defining the observer’s conditional
expectations.

Proposition 2.1. Denote by �′ the space (C[0, T ]× {0, 1}T ×R) with generic ele-
ment ω′ = (W ′, S ′, µ′

0) and endow this space with the Borel σ -algebra. Let f (ω) be in
L1(P ). Put

ζt (ω
′;ω) = δ(�W) · e−1/2

∫ t
0

m2u(ω
′ :ω)

σ20
du+∫ t

0
mu(ω

′ ;ω)

σ20
dDu(ω)

,(2.8)

where

mt(ω
′;ω) = e−

∫ t
0 S

′
u du

[
µ′
0 +

∫ t

0
S ′
ue

∫ u
0 S′

v dv dDu(ω)
]

(2.9)

and δ(·) places unit mass at the path

�Ws(ω
′;ω) = σ−1

0

[
Ds(ω)−D0(ω)−

∫ s

0
mu(ω

′;ω) du
]
, 0 ≤ s ≤ t.(2.10)

Then

E[f |FD
t ](ω) ≡ Ẽtf =

∫
�′

f (ω′)ζt (ω
′;ω) dP (ω′)

∫
�′

ζt (ω
′;ω) dP (ω′).(2.11)

Proof. All proofs are in the Appendix.

remark 2.3. I use the tilde notation throughout (including ṽar, c̃ov, s̃kew, etc.) to
denote posterior expectations with respect to the σ -algebra generated by the observations.
If the time subscript is suppressed, the integrand and the information set should be
assumed contemporaneous. Thus ṽar(µ) ≡ var(µt |FD

t ) and X̃ ≡ E[Xt |FD
t ] for any

process Xt .

8 Originally these seem to have arisen in connection with target tracking problems. See Loparo, Roth, and
Eckert (1986), Dufour and Bertrand (1994), and Björk (1980, 1982); or in discrete time Krishnamurthy and
Evans (1998), Elliott, Dufour, and Sworder (1996), or Mariton (1990).

9 See Davis (1981), Florchinger (1993), or Florchinger and Gland (1991).
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The proposition provides an implementable method of computing posterior expec-
tations for this system. Examination of the result shows that, for an observer of the
D process, the set of unknowns is just the history of the switching process S (plus the
scalar random variable µ0). There is no need to try to estimate the Brownian motion path
W . This makes the task much more practicable. While both S and W are uncountable
collections of random variables, the former is completely characterized by the collection
of (exponential) random variables defining its jumps. And in any finite time interval the
chance that there are more than K of these declines exponentially in K . So in effect
the parameter space over which inferences need to be made is of small dimension. This
makes it feasible to perform the function space integration in equation (2.11) by Monte
Carlo means.
Such calculations will be used extensively below to study properties of the system. The

limitation of this characterization of the filtering solution is that it does not directly give
the dynamic evolution of estimators in terms of the data. The next proposition affords
a way to update conditional expectations of the quantities of interest recursively. The
formulas are given for specific conditional moments, but the technique allows a similar
description of arbitrary posterior expectations.

Proposition 2.2. Let µ̃kSt and µ̃k
t denote E(µk

t St |FD
t ) and E(µk

t |FD
t ). Define W̃t ≡

(Dt −D0 −
∫ t

0 µ̃sds)/σ0. Then

(I) (W̃t ,FD
t ) is a Wiener process.

(II) µ̃kSt , µ̃
k
t exist for all t and all (integer) k ≥ 0 and satisfy the stochastic differential

system

dµ̃k
t =

(
k(k − 1)µk̃−2St

σ 20

2

)
dt +

(
µk̃+1

t − µ̃k
t µ̃t + kµk̃−1Stσ

2
0

)
dW̃t/σ0(2.12)

dµ̃kSt =
(
µ̃k

t λ0 − µ̃kSt (λ0 + λ1)+ k(k − 1)µk̃−2St

σ 20

2

)
dt

+ (
µk̃+1St − µ̃kSt µ̃t + kµk̃−1Stσ

2
0

)
dW̃t/σ0(2.13)

with initial conditions in accordance with the prior.

The first part of the proposition tells us what the D process looks like marginally—that
is, with respect to the information in FD

t . Rewriting the definition of dW̃t , we see,

dDt = µ̃tdt + σ0dW̃t .(2.14)

This representation is a generic filtering result, which does not depend on specific features
of the current model. Since dW̃t is FD

t measurable, the remarkable implication is that,
given his own best estimate of the true drift µ̃t ≡ E[µt |FD

t ], an observer of D still views
it as an Itô process. D does not appear Markovian, however, because the drift estimate
depends on the entire observation history.
The second part of the proposition provides an explicit algorithm for updating that

estimate, and all other integer moments of the joint distribution, in real-time. The algo-
rithm may be viewed as consisting of two steps. First, the new datum dD is stripped
of its expected component µ̃dt to yield the innovation series σ0dW̃ . Then each old esti-
mate is updated by some multiple of this “shock” plus a trend term, which is just the
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expected trend of the parameter. The coefficients for the updating, in the case of the
integer moments in the proposition, are themselves combinations of integer moments.
However the system is not closed: the kth equation contains terms involving (k + 1)th
moments.10 Nevertheless it can still provide important insights into the model’s dynam-
ics. That is the subject of the next section. The remainder of this section considers the
effect on the filter in part (II) of some generalizations to the system specification.
The proposition is an application of a classical filtering result due to Fujisaki,

Kallianpur, and Kunita (1972) which requires much less structure than has been imposed.
Several natural extensions, in fact, lead to only minor changes in the coefficients given
above.
If, for example, the innovations to µ and D are not perfectly correlated—perhaps due

to an extraneous source of observation noise—then (2.12) becomes

dµ̃k
t =

(
k(k − 1)µk̃−2St

σ 21

2

)
dt + (µ̃k+1

t − µ̃k
t µ̃t + kµk̃−1Stρσ0σ1)dW̃t/σ0,(2.15)

where now σ1 and σ0 are the diffusion coefficients of dµ and dD respectively, and ρ is
their correlation. The modification to (2.13) is analogous.
If the persistence process is allowed to take multiple values or even vary continuously,

then a full description of the filter will include all cross moments of the form µ̃kSj . How-
ever for any S that has the representation

dSt = b(�S − St) dt + dMt

(where M is a martingale and b and �S are constants), the equations in the proposition
require only one change. With the identifications (λ0+λ1) = b and λ0 = b�S, the optimal
filter is as above but with k(k − 1)µk̃−2S2t σ

2
0 /2 replacing k(k − 1)µk̃−2Stσ

2
0 /2 in each

drift term.
A third interesting generalization would incorporate more sources of information about

the unobserved parameters. Additional information about µ—direct news about growth
rates—could be modeled by a multidimensional observation D and a general correlation
structure:

dDt = µtι dt ++0 dW

dµt = St+1 dW

with ι a unit vector of appropriate dimension and St now possibly a matrix-valued per-
sistence process. The notation becomes more involved. But the expressions for the drift
estimator µ̃, for example, illustrate the fact that the essential structure of the filter is
preserved. With scalar observations and k = 1 in (2.12), we have

dµ̃t = (S̃tσ
2
0 + c̃ovt (µ)) dW̃t/σ0.

The vector equivalent is just

dµ̃t = (S̃t+1+
′
0 + c̃ovt (µ)ι)(+0+

′
0)

−1/2 dW̃t ,

where now the innovation series is dW̃t = (+0+
′
0)

−1/2(dD− µ̃t ι dt). The two significant
points about the comparision are (1) the expected degree of persistence S̃t still just enters

10 Using the results of Björk (1980), it can be shown that no finite-dimensional filter exists for this sys-
tem; that is, any other system of statistics describing the joint posterior distribution will likewise be infinite
dimensional.
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linearly in the diffusion coefficient, and (2) the process dW̃t drives both the observation
series and the estimator updates, just as before.
The foregoing discussion demonstrates that the specialized system introduced at the

beginning of the section is not required to obtain the type of dynamic equations for the
estimators derived in Proposition 2.2. However, as mentioned above, these equations (as
well as the generalizations) are difficult to implement empirically due to their recursivity.
The earlier Proposition 2.1 did fully exploit the structural restrictions in order to obtain
an implementable characterization of inferences. Below I will use both results to study
general and specific properties of the system.

3. RETURN DYNAMICS

The interpretation to be given to the filtering problem of the preceding section is of an
economic series (dDt) whose shocks have an unobservable dichotomous trait: persistence
or transience. To study the implications this could have for financial time series a map-
ping is needed between the observer’s conditional expectations and prices. This section
introduces a generic model that makes the role of expectations particularly transparent.
Some interpretations of the pricing equation are considered, and a proposition clarify-
ing the relationship between the univariate information in price histories and agents’
full information set, FD , is established. Next I derive a system of stochastic differential
equations describing return dynamics from Proposition 2.2. Then I use Proposition 2.1
to illustrate the dynamics for a specific case with parameters motivated by an exchange
rate interpretation of the model. Volatility patterns are shown to be broadly similar to
those observed in practice.

3.1. A Generic Asset Pricing Equation

To begin, consider a one-good world with a single risky asset paying dividends con-
tinuously at rate Dt . Suppose there is also an elastically supplied risk-free storage tech-
nology with fixed return r . Identify the stock market level with the shadow price of the
endowment for a single representative agent, risk-neutral and infinitely lived. A standard
result is given in Lemma 3.1.

Lemma 3.1. Under the above assumptions, and with the system and observation
dynamics given by equations (2.4), (2.6), and (2.7), the price of the stock is

Pt =
Dt

r
+ µ̃t

r2
.(3.1)

Equation (3.1) leaves much to be desired as a model of stock prices. It ignores risk-
aversion, uses constant discount rates, and permits negative prices. Nevertheless it moti-
vates consideration of the general class of models that may be written

Pt = θ0 + θ1Dt + θ2µ̃t ,(3.2)

where the θs are constant, D is some fundamental series, and µ is its growth rate. The
notion is that, at least to first order and/or for limited time spans, a variety of pricing
problems reduce to adding a capitalized growth rate to a current intrinsic value.
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A well-known example in the finance literature is the “dividend-ratio” model of
Campbell and Shiller (1988). Using a log-linear approximation to a present-value iden-
tity, those authors express the log dividend-price ratio, δt , of a stock as

δt = constant− Ẽt

(∑
j

ρj�dt+j

)
,

where ρ is a constant and �dt is the dividend growth rate. If the expected value of that
growth rate is the same for all future periods (as it is under the specification in the last
section), then the term on the right is just a constant times my µ̃t . So again one recovers
(3.2) (with θ1 = 1) by solving for the log stock price. The Campbell–Shiller derivation is
valid in any economy with constant expected returns, subject to the conditions mentioned.
Moreover it shows that (3.2) can be interpreted in log terms, so that changes in P are
returns.
As another example, one can interpret P as the log exchange rate in a flexible-price

monetary model (as in Frenkel and Mussa 1985). Now Dt is the difference in money
supply growth rates between two countries; θ0 is zero, θ1 is one, and θ2 is the semi-
elasticity of money demand with respect to interest rates. The argument (outlined in
Johnson 1999) essentially only uses purchasing power parity and a log linearization of
real money demand.
Under this latter interpretation, (3.2) is just a standard macroeconomic model of

exchange rate determination. Much of the empirical work on conditional heteroscedastic-
ity has also focused on currencies. So this case may be particularly relevant. Moreover,
as it is expressed in terms of log prices, like the Campbell–Shiller model, negative values
pose no conceptual difficulty. For these reasons, I frame most of the discussion of the
model below in terms of this interpretation.
Equation (3.2) describes prices as a function of conditional expectations, where the

conditioning is with respect to a second series, D. In practice, however, the volatility
dynamics of interest are the univariate ones. That is, we ultimately want to know what
the return series looks like when conditioning only on its own history. So a description
of the dynamics in terms of FD measurable quantities will have to be projected onto the
smaller information set FP .
This projection is a second filtering problem. Solving it (e.g., obtaining a characteriza-

tion of Et(µ̃t |FP
t )) is, in general, a much harder task than solving the one in Section 2.

This is because the system being projected is now infinite dimensional and none of its
components is independent of the others. So it appears that the marginal price dynam-
ics may be vastly more complicated than the bivariate ones. The following proposition
shows that this is not the case.

Proposition 3.1. If prices are given by a model of the form (3.2), where the system
and observation dynamics are given by (2.4), (2.6), and (2.7), then, assuming P(µ0 ≤
α|FP

0 ) = P(µ0 ≤ α|FD
0 ), ∀α, we have

FP
t = FD

t ∀t.

The happy result, is that—for filtering purposes—prices are fully revealing whenever
(3.2) applies. Conditional expectations with respect to price histories alone not only
are determined by but actually coincide with those with respect to the joint history
of prices and fundamentals. Thus the models already derived are univariate ones. The
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driving series of (normalized) fundamental innovations W̃t is also the (normalized) price
innovation series.
The proposition holds in this model because there is only one exogenous variable,

D, whose changes can be recovered from those of P due to the monotonicity of their
effect on it. But the proof is not dependent on the restricted nature of the true parameter
evolution. In particular, neither the dichotomous property of the persistence variable, nor
the absence of outside noise sources in the equations for dD and dµ is invoked.
Besides greatly simplifying the development, the proposition also makes the analysis

more robust in the sense that the results do not depend on a particular identification of
D. Stock prices may be driven by consumption or perhaps by dividends. Both money
supplies and fiscal deficits are reasonable candidates for the determinant of exchange
rates. We need not decide. As long as the dynamics of the exogenous series are described
by a system of the form introduced in Section 2, and as long as prices are approximately
linear in its growth rate, the details of the economy do not matter. The results below will
still be correct.

3.2. Volatility

If asset prices (or log prices) are given by equation (3.2), then changes are just a
weighted sum of the change in the exogenous fundamental D and in the endogenous
estimate of its drift.
In understanding the behavior of returns, it is instructive to start by examining the

dynamics that would obtain without unobservability. If the growth rate µ could be
inferred without error, then µ̃ = µ and both components of returns are exogenous. The
dynamics in this case reveal the content of the assumptions made about the stochastic
environment. Combining (2.3), (2.4), and (3.2) yields

dPt = θ1µt dt + σ0(θ1 + θ2St) dWt .

This illustrates the intuition given in the introduction. In the presence of any persis-
tence, returns will display “excess volatility”—that is, strictly more than contributed by
the variation in fundamentals. Changes in persistence translate directly into changes in
volatility. In particular the volatility process will inherit the autocorrelation structure of
St . Note that none of these observations would change if innovations to D and µ were
not perfectly correlated. If equation (2.4) were replaced by

dµt = σ1St dVt ,

where dV is a separate Wiener process whose correlation with dW is ρ, then the volatility
expression would just be

(θ 21σ
2
0 + 2θ1θ2ρσ0σ1St + θ 22σ

2
1 S

2
t )
1/2,

which has the same properties just described.
By restricting agents’ information to the fundamental series D, we replace this descrip-

tion of volatility in terms of an unexplained second state-variable with one governed by
expectations about that variable. We will see below that the distinction between the
two models is, in fact, testable. However the full model retains the conclusions of the
preceding paragraph, with expected persistence substituted for true persistence.
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Deriving the dynamics of the full model is a straightforward application of
Proposition 2.2. Equation (3.2) now gives the system

dPt = θ1µ̃t dt + h̃t dW̃t(3.3)

dW̃t ≡ (dDt − µ̃t dt)/σ0(3.4)

h̃t = θ1σ0 + θ2�t(3.5)

�t ≡ σ0S̃t + ṽart (µ)/σ0(3.6)

dµ̃t = �t dW̃t(3.7)

d�t = σ0[(λ0 + λ1)(�S − S̃t )+ (S̃t − �2t /σ
2
0 )] dt + gt dW̃t(3.8)

�S ≡ λ0/(λ0 + λ1)(3.9)

gt ≡ 3c̃ovt (µ, S)+ s̃kewt (µ)/σ 20(3.10)

g̃t ≡ θ2gt .(3.11)

Look first at equations (3.5) and (3.6). They show that, in addition to replacing S by its
expectation, there is another difference from the volatility of the simplified, observable
case. This is the contribution of uncertainty about µ. The inferred growth rate is more
volatile than the parameter itself, since it is driven by the inferred innovation dW̃ , not
dW . In consequence, returns are more volatile when the posterior variance of µ is high.
This is the indirect influence of unobservability on the system.
The term � is necessarily positive. If the pricing model is normalized to have θ1 > 0

and θ2 > 0 (which just corresponds to placing positive value on the flow D), then
h̃, the volatility of P , is positive as well. In fact, it is bounded away from zero.
Equation (3.7) shows that the growth rate estimator inherits the martingale property of

the true growth rate. Had the specification included a mean-reverting drift for µ (perhaps
to ensure its long-run stationarity) the effect would be to add the expected value of that
drift to this equation. The important point is that the diffusion coefficient of dµ̃ would
be unaltered. Since this is the term that generates return heteroscedasticity, our volatility
analysis would be robust to this generalization.
Now consider (3.8) which describes the evolution of volatility. The first thing to notice

is that this defines a qualitatively new class of continuous time volatility models. Unlike
discrete time GARCH models or their degenerate diffusion limits (Kind, Liptser, and
Runggaldier 1991, Corradi 1997), it is the price innovations themselves, not their square
or absolute value, that enter here. This implies that volatility will be path-dependent,
and that return shocks will have asymmetric effects on volatility. The sign of the impact
is governed by the term g. Since this term is a combination of two posterior moments
whose sign may vary, the correlation between returns and volatility may switch sign. This
correlation, in turn, determines the skewness of the finite-horizon return distribution. The
model thus allows time-varying return skewness, which would imply changes over time
in the implied-volatility “smiles” in options prices.
Another distinctive feature of the model is the implication that, although volatility is

stochastic, it is completely determined by the path of return innovations, W̃t . Unlike ordi-
nary stochastic volatility formulations, or the continuous-time GARCH limits of Nelson
(1990), there is no outside source of noise driving the variation in � (or h̃). This, too,
has important implications for options pricing as it implies that, despite the randomness
in volatility, markets remain complete. (Hobson and Rogers 1998 also recently intro-
duced a class of volatility models with this property.) In fact, in the present model, the
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completeness is even stronger in that it is not only volatility that is stochastic, but the
volatility of volatility, and its volatility, and so on.11

The drift term in (3.8) is a quadratic form in S̃t and ṽart (µ)/σ 20 . It is always negative
(positive) for high (low) enough value of either argument. Hence the equation implies
that volatility will be more strongly mean reverting than in the linear specification most
commonly used in stochastic volatility models. We cannot infer, however, that � will be
a stationary process. But the equation does tell us that its drift will be zero when S̃t is at
its unconditional mean �S ≡ λ0/(λ0+λ1) and � = σ0

√�S. For this reason, it is appropriate
to view σ0(θ1 + θ2

√�S) as the steady-state volatility of the system.12
Much harder to analyze is the diffusion term in (3.8), denoted g, which involves

higher posterior moments of agents’ beliefs. As noted above, the system of posterior
moment equations is not closed. So while one could use Proposition 2.2 to write down the
dynamics of the components c̃ovt (µ, S) and s̃kewt (µ), these would only involve higher
moments still. Section 4 will make some analytical progress by introducing auxiliary
assumptions. For now, though, the best way to gain insight into the system’s properties
is to exploit the alternative characterization of the agent’s beliefs given by the function
space integral in Proposition 2.1. I use this next to compute all the posterior moments
for a specific example. This produces a representative time-series of volatility and the
volatility of volatility, and permits analysis of the individual components.

3.3. Time-Series Characteristics of Volatility

To investigate the volatility patterns described by equation (3.8), I study its realization
under a particular parameter configuration chosen to represent plausibly the structural
restrictions of an exchange rate model, At issue, specifically, is whether or not the model
reproduces the type of volatility autocorrelation found so consistently in practice.
The technique is straightforward. Once the structural parameters are chosen, the true

values of the state variables (µ0,D0, and the processes St and Wt ) are drawn from
their distributions at daily frequency for 25 years. These values imply values for the
true growth rate process µt and the observed series Dt , yielding a full history of the
economy. Then the history of agents’ contemporaneous expectations is calculated from
their observation data D, using the formula derived in Proposition 2.1.13 These expec-
tations are then converted to returns using equation (3.2) with coefficients chosen as
described below. Besides the return series, histories of the instantaneous volatility h̃t and
its volatility g̃t are likewise constructed.
To select parameter values relevant in an exchange rate context, I employ the simple

monetary model mentioned in Section 3.1. The D series is then identified as the differ-
ence in log real money balances between two countries. In the United States the standard

11 It is worth remarking that the perfect correlation between volatility and returns is unrelated to the perfect
correlation assumed between the observable series D and its true drift µ (cf. equation (2.15) above). Rather,
it is simply a consequence of the fact that both quantities are now endogenous, and hence must be driven by
the same external news.

12 If the persistence parameter κ differs from unity (cf. Remark 2.1), then � becomes σ0κS̃t + ṽart (µ)/σ0
and d� becomes [σ0κ(λ0 − (λ0 + λ1)S̃t ) + (σ0κ

2S̃t − �2t /σ0)] dt + [3κ c̃ovt (µ, S) + s̃kewt (µ)/σ 20 ] dW̃t . The
steady-state volatility is thus σ0(θ1 + θ2κ

√�S).
13 The function space integration involved in this step is carried out by Monte Carlo sampling until the

numerical error for all quantities is less than ±2.5%. Euler approximations are used for the stochastic integrals.
Adding higher order corrections of the Milstein type produces very small changes in the expectations and does
not affect the conclusions. Notice also that the proposition gives the exact continuous-time Radon–Nikodym
derivative for each day, not that of a discretized approximation. So the choice of the time interval does not
affect the expectations.
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deviation of changes in M1 has been between 1% and 3% per annum over the last 20
years, with similar values for other large economies. Across countries money growth
covaries as business cycles do, suggesting a volatility, σ0, of D of perhaps 3%.
The parameters λ0 and λ1 may be interpreted as the inverse of the expected duration

(in years) of regimes of transitory and permanent shocks to D, respectively. Episodes of
permanent shocks, which may be thought of as periods of monetary policy adjustment,
are likely to be both infrequent and short-lived. I take λ0 = 1/3 and λ1 = 3, implying
�S = 0.10, which corresponds to assuming that, on average, the economy is in its stable
phase 90% of the time, being interrupted every 3 years by a structural change taking, on
average, 4 months to resolve. It is difficult to gauge the validity of these exact choices as
the current specification has not been considered in the empirical monetary literature.14

In choosing the preference parameters θ0, θ1, and θ2, there is, in fact, just one further
degree of freedom. The monetary model implies that θ0 = 0 (a consequence of pur-
chasing power parity) and θ1 = 1 (via the Fisher hypothesis). The theory also imposes
constraints on θ2. This coefficient corresponds to the semielasticity of money demand
with respect to nominal interest rates. Empirical estimates of this quantity typically find
values between 5 and 10.15 I choose a figure within this range, the precise value of
which (9.55) is taken to set the unconditional volatility of the simulated returns to 12%
per annum, a typical number for a major exchange rate in the last decade. The fact that
the economic theory supports this calibration reinforces the plausibility of the parameter
configuration as a whole.
The key properties of the simulated returns can be seen in Figure 3.1. The top panel

shows the log exchange rate history, along with its two components θ1D and θ2µ̃. The
components are perfectly correlated and about the same size. But the growth rate term
contributes most of the volatility. The second panel shows the history of that volatil-
ity, h̃t , and of the two components that comprise it. Of these, the posterior variance
term (middle line) is both larger and more volatile than the expected persistence term
(lowest line). However these components too are nearly perfectly positively correlated.
This observation, not obvious from the analysis in the last section, indicates that both
components may be viewed as being driven by changing beliefs about persistence.
The composite volatility term, h̃t , clearly exhibits the positive autocorrelation typical

of many financial series. In addition, the nonlinear mean reversion is apparent, with large
spikes in volatility being damped more strongly than small changes about the long-run
mean. This implies a behavior that would seem nearly integrated locally (or in small
samples) but stationary globally.
Neither stationarity nor ergodicity of the h̃t process has been shown analytically. So

properties of its autocovariance function remain conjectural, and may not resemble sim-
ulated values. Nevertheless, the top panel of Figure 3.2, showing the sample autocorre-
lation, strongly supports the visual impression. This particular parameterization exhibits
significantly positive volatility autocorrelations to lags of at least two years. In this sense,
the model can be said to imply the existence of GARCH effects.
Properties of the true volatility process are not, however, directly comparable to actual

data, since, in practice, volatility cannot be estimated perfectly. It is not clear whether

14 Kaminsky and Lewis (1996) find evidence of regime shifts in U.S. monetary fundamentals in the second
half of the 1980s. The regimes (which are restricted to have the same switching probabilites) have expected
duration of between 77 and 280 weeks, depending on the specification.

15 See Baba, Hendry, and Starr (1992) and Ball (1998) for evidence regarding this parameter in the United
States. The model implicitly assumes the same value for both countries. Also note that the semi-elasticity is a
negative number. It becomes positive, as in the text, when the exchange rate is in units of the foreign currency,
which is consistent with θ1 = +1.
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Figure 3.1. Simulated data and volatility. The top panel shows the simulated log
exchange rate series (P) computed using the formula of Proposition 2.1 and the param-
eters of Section 3.3. The two components of the series are also shown (cf. equation
(3.3)). The bottom panel plots the instantaneous volatility, h̃, for the simulation and its
two time-varying components (cf. equations (3.5), (3.6)). Note: the series labeled ṽar is
θ2ṽart(µ)/σ0 and that labeled S̃ is θ2σ0S̃t .

the degree of autocorrelation found is consistent with observed behavior of exchange
rates. Empirical researchers typically measure GARCH phenomena by the sample auto-
correlation of squared returns. The second panel of the figure plots this function for the
simulated return series here.
The square returns exhibit far less autocorrelation than the true volatility process, a

consequence of the former being the latter multiplied by an i.i.d. innovation. The fig-
ure, in fact, closely resembles the curves reported in studies of daily returns (Baillie and
Bollerslev 1989, Ding, Granger, and Engle 1993), with rapid decay to less than 0.10 after
the first few days and then very slow decay, with statistically positive values at lags of
well over a year. Hence, in addition to delivering GARCH effects of the required mag-
nitude, the model also offers a potential explanation for the “long memory” in volatility
phenomenon (Baillie, Bollerslev, and Mikkelsen 1996, Andersen and Bollerslev 1997).
Table 3.1 compares the simulated returns with those of some representative currency

series. Here the benchmark for assessing GARCH effects is the Ljung and Box (1978)
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Figure 3.2. Volatility autocorrelation functions. The top panel shows the sample auto-
correlation function of the true volatility series h̃t for the simulation of Section 3.3. The
bottom panel shows the autocorrelation for the simulated squared returns. This function
has been smoothed using a Bartlett kernel of width 3. The horizontal axis is in units
of days.

Table 3.1
Daily Return Statistics

Sample ρ1(r) ρ2(r) Q(10) ρ1(r
2) ρ2(r

2) Q2(10) κ

Model Simulation .0097 −.0118 9.95 .0706 .0567 456.10 3.87
USD/GBP 3/80-2/85 .0004 .0013 7.64 .1474 .0551 74.79 4.81
DEM/USD 3/80-2/85 .0529 −.0030 9.16 .0934 .0462 133.08 4.21

The table compares a 25-year simulated return series of the unobservable persistence
model with two samples of log exchange rate changes, taken from Bollerslev (1987).
Shown are the first two autocorrelation coefficients (ρ), and the Ljung and Box (1978)
statistic (Q) for both returns and square returns. The Ljung–Box statistic is asymptotically
chi-square distributed with 10 degrees of freedom. The last column gives the sample
kurtosis of the returns.
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portmanteau statistic. This statistic is a weighted average of autocorrelation coefficients,
and scales like the sample size. The comparison numbers are from a data set of approx-
imately 1/5th the length of the simulation. Hence the values reported for the squared
returns, being five times greater, are consistent with true autocorrelation coefficients of
the same magnitude.
It is also important to note that the fidelity of the model in terms of second moments

does not come at the cost of inducing spurious effects in other moments. From the table,
we can also see that autocorrelations of the returns themselves are insignificant, as in the
data. Also interestingly, the sample fourth moment, though not as large as that typical
of daily currency returns, is far larger than normally reproducible by diffusion models,
or daily models with normal innovations. The current model does not fully explain the
kurtosis in the data. However its explanation of second moment behavior may contribute
part of the answer.
Besides showing the model’s ability to generate observed heteroscedasticity, the sim-

ulation affords a means to distinguish the model from standard econometric specifica-
tions. As remarked in Section 3.2, the predicted perfect correlation between volatility
and returns implies that large price moves can potentially coincide with reductions in
instantaneous variance. This can happen in stochastic volatility models too, where the
processes are driven by separate (possibly correlated) innovations. In that case, plotting
these changes against each other will produce a bivariate normal cloud. In a GARCH(1,1)
specification, by contrast, the same plot will yield a U-shaped curve. In the usual notation
of that literature,

h2t+1 = ω + αr2t + βh2t ⇒ �h2t ≈ ω + αr2t ,

since, empirically, β ≈ 1 in high-frequency samples.
Figure 3.3 plots the variance impact curves for the simulated data. Unlike either

alternative, the quasi-instantaneous (1 day) relationship is characterized by a distinc-
tive butterfly shape. As with a GARCH model, small returns are associated with slightly
lower variance. But, as in a correlated bivariate model, large returns coincide with large
changes. Here, though, the sign of the correlation is itself random. The symmetry of
the figure suggests that it is as likely to be positive as negative. At longer horizons
the expected U-shape does emerge. So the basic intuition of the GARCH model—that
realized volatility drives future volatility—is preserved.
Like volatility autocorrelation functions, these impact functions are not directly com-

putable from data. Sample counterparts may not be sufficiently informative to discrimi-
nate between models.16 However the graphs clearly point to the sign-switching behavior
of the volatility-return correlation as a defining characteristic of the unobservable persis-
tence model. To decide if this behavior is counterfactual, what is needed is a prediction
of precisely when such switching should occur. That is the subject of the next section.
The conclusions of this section, being simulation based, are necessarily contingent. I

have not shown that the unobservable persistence model generates return-like dynamics
in general. I have only demonstrated that this can happen over long time intervals for a
particular parameter configuration. These parameters were motivated by the underlying
economic story, as it applies to exchange rates. In this context, the model does appear to
offer a structural explanation for conditional heteroscedasticity, while, at the same time,
implying sufficiently novel features to enable it to be falsified.

16 To my knowledge, there are no empirical studies of the volatility response function of exchange rates.
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Figure 3.3. Volatility impact functions. The figure plots changes in instantaneous vari-
ance h̃2t against return shocks over different time intervals using the simulated series of
Section 3.3.

4. A TESTABLE IMPLICATION

The preceding section established that, for reasonable parameter values, the unobservable
persistence model can reproduce empirical patterns in second moments of returns. Yet
the model also implies complex pathwise dynamics, including counterintuitive decreases
in volatility under some circumstances. The goal of this section is to extract a general
implication from this complexity which will enable its predicted behavior to be uniquely
distinguished.
To do this, it is necessary to understand the evolution of the volatility of volatility. We

have seen that this variable, g̃t , is determined by two moments c̃ovt and s̃kewt of agents’
posterior beliefs, and that the evolution of these are governed by still higher moments.
However under some conditions it is possible to infer the signs of these terms, and,
thence, the sign of g̃t . That quantity is the instantaneous correlation of volatility and
returns. So the result is a prediction about the slope of the volatility impact function at
each point in time.
After first defining some conditions and discussing their plausibility, the next subsec-

tion presents the main proposition. A second subsection then explores the applicability
of the conditions, and the extent to which the result may be expected to be stronger than
that formally established.
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4.1. Volatility and Trends

To begin, consider the occurrence (or the set in the sample space)

Aτ = {ω : d〈S̃t , h̃t〉/dt > 0, t = τ }.(4.1)

When this obtains, S̃t experiences an unexpected shock if and only if h̃t experiences one
in the same direction. Since the two series are driven by the same W̃t , this means at t
they are perfectly correlated. An equivalent condition (from Proposition 2.2) is

{sign(c̃ovτ (µ, S)) = sign(3 c̃ovτ (µ, S)+ s̃kewτ (µ)/σ 20 )},
which effectively requires the skew to be small relative to the covariance when their
signs disagree. Intuitively, most of the time the signs should agree. This is because the
agent’s distribution for µ is a mixture of the distribution µ|S = 1 and µ|S = 0. If each
of these is roughly symmetric, and if the first has less mass (S = 1 is less likely), the
superposition will be skewed in the direction of the S = 1 mode, which is also the
direction of the covariance of µ and S. Below I will present numerical evidence that Aτ

is an event of high probability for many parameter combinations.
Next, I introduce a restriction enabling an approximation to the cross-moment

c̃ovt (µ, S). By conditioning on the current value of the state S, this may always be
written Ẽt ((µ − µ̃)S) = S̃t (1 − S̃t )[Ẽt (µ|St = 1) − Ẽt (µ|St = 0)]. The sign is deter-
mined only by the term in brackets, which indicates the direction in which the µ estimate
changes as S̃t goes up.
In the proof of Proposition 2.1, I establish the representation

Ẽt (µt ) = Ẽt

(
µ0e

− ∫ t
0 Su du +

∫ t

0
Sve

− ∫ t
v
Su du dDv

)
,

whence

Ẽt (µt |St = i) = Ẽt

(
µ0e

− ∫ t
0 Su du +

∫ t

0
Sve

− ∫ t
v
Su du dDv|St = i

)
.(4.2)

Ignoring the term involving µ0 and taking the posterior expectation inside the dD inte-
gral,17 we see that one forms expectations about µt by weighting the observation series
by the kernel Ẽt (Sve

− ∫ t
v
Su du) and summing.

Now if the filtering problem is hard enough, then the data will rarely provide enough
information to cause the observer to greatly alter his prior expectations of these weights.
This seems especially likely when conditioning on the current value of S: given the state,
posterior and prior expectations of that discount factor must coincide for v close to t , and
their difference for earlier values will be ameliorated by the exponential term. So, in this
case, the weights will not vary much with current information. That is, the expectations
involved will be close to their unconditional values.
By restricting consideration to successively less informative histories, we may make

this approximation as close as desired. The exact condition I will use to restrict the
informativeness is

Bτ =
{
ω : sign

( ∫
�

µτ (Sτ − S̃τ )ζ(ω) dP
)
= sign

( ∫
�

µτ (Sτ −�S)δ(�W(ω)) dP
)}

,(4.3)

where ζ is the Radon–Nikodym derivative given in Proposition 2.1, δ is given by equa-
tion (2.10), and �S ≡ λ0/(λ0 + λ1). The two integrands only differ by the exponential

17 Recall that since the integrand is of bounded variation, this integral may be treated as a Lebesgue–Steiltjes
pathwise limit.
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component of the Radon–Nikodym derivative (cf. equation (2.8)), and the change from
S̃t to its mean �S. So the condition will hold when the exponential is close to constant
under the prior. That is, the D history does not discriminate strongly between different
S histories. The probability of Bτ will also be shown below to be close to 1 for many
relevant cases.
A third condition to be used below restricts consideration to a set on which the path of

the volatility � is close to its steady-state value ĥ ≡ σ0�S1/2. Let µ̂t be the drift estimator
obtained by approximating the former by the latter:

µ̂t ≡ µ̃0 +
∫ t

0
ĥdW̃u.(4.4)

The condition weights the history of errors (µ̂t − µ̃t ) by a kernel ϕ, to be defined later.
This weighted sum is compared to the similarly weighted observation history:

Cτ =
{
ω :

∣∣∣ ∫ τ

0
ϕ(τ − u)(µ̂u − µ̃u) du

∣∣∣ ≤ ∣∣∣ ∫ τ

0
ϕ(τ − u) dDu

∣∣∣}.(4.5)

This set, too, is not unlikely if (as will be the case) the kernel places most of its mass
on recent history. Then, even if � strays far from its steady-state value, the observation
changes dD, being of order (dt)1/2, will make the right-hand integral much larger than
the dt integral on the left.
Last, I need to formalize the conditions under which the initial conditions do not

significantly affect the posterior moments. For this it suffices to imagine that the initial
time was long ago. Notationally, it is convenient to do this by taking the current time τ

to infinity.
Under the preceding assumptions, the volatility of volatility can be signed.

Proposition 4.1. Let gt ≡ 3 c̃ovt (µ, S) + s̃kewt (µ)/σ 20 . There exists a weighting
function ϕ(·) (given in the Appendix) such that for all large τ ,

(I) on Aτ ∩ Bτ :

sign(gτ ) = sign
( ∫ τ

0
ϕ(τ − u) dDu

)
.(4.6)

(II) Moreover, on Aτ ∩ Bτ ∩ Cτ :

sign(gτ ) = sign
( ∫ τ

0
ψ(τ − u) dW̃u

)
(4.7)

where ψ(x) ≡ σ0[ϕ(x)+�S1/2φ(x)] and φ(x) ≡ ∫ x

0 ϕ(y)dy.

The proposition gives the sign of the volatility-return correlation in terms of two related
data weighting function. Both these are close to an ordinary exponential smoother. (They
are graphed in Figures 4.1 for the parameter values used in Section 3.3.) Hence the
right-hand sides in parts (I) and (II) are essentially measures of the local trend in the
observations (I), or the normalized innovations (II).
For this reason, the proposition has a very simple interpretation: volatility goes up

when trends continue, and goes down when trends reverse. To see this, suppose that at t
the conditions hold and gt is positive. By (4.7) that implies the trend in returns has been
positive prior to t . Then the continuation of that trend over the next instant means that
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Figure 4.1. Data weighting functions. The figure shows the two kernel functions derived
in Proposition 4.1 evaluated for the parameter set used in Section 3.3. The horizontal
axis is the log of lag time (in units of days). Also plotted is the pure exponential function
with decay parameter β = 1+ λ0 + λ1.

the next innovation dW̃t is positive. But then the volatility shock, gtdW̃t , is also positive
because gt is. Had the trend reversed, dW̃t < 0 would imply gtdW̃t < 0, a decrease in
volatility.18

The intuition behind this surprising realtionship may be described in terms of the
effect of a recent trend on the two components of �t : ṽart (µ) and S̃t . First, a trend is
tantamount to systematic forecast errors of the same sign. Even if the errors are small,
this raises the likelihood that they resulted from a biased estimate of the drift µ, rather
than from chance. Hence posterior uncertainty, ṽart (µ), about that estimate rises.19 At
the same time, the rational inference from the recent trend is that µ is likely to have
been shocked recently. But this only happens in the persistent state (i.e., when S = 1).
Since states change infrequently, it is (relatively more) likely that this is still the state.
This causes the observer to update his estimate S̃t .
It should be emphasized that the proposition only relates instantaneous changes in

volatility to instantaneous changes in trends. It does not say that volatility will be high
following a trend, nor even that volatility will have gone up over the course of such a
trend. Moreover, in only equating signs, the proposition does not assert any relationship
between the strength of trends and the magnitude of g.
Nevertheless, the result provides the basis for the primary implication of the unob-

servable persistence model: changes in momentum (in absolute value) should predict
changes in volatility. The theory delivers this implication in terms of a specific definition
of momentum—one that is, in fact, FP -measurable and hence directly computable from
returns.

18 The argument here refers to the unexpected component of return and volatility changes. Over the instant
dt , the expected components may be ignored.

19 This effect might not be present if µ were expected to mean-revert, as, for example in the model of Wang
(1993). Then, by the time a trend were detected, the likely change to µ might have dissipated. Also models
with regime switching in µ, such as Veronesi (1999), would not share this feature. Then a trend would signal
a switch to the new level. But since that level is known, posterior uncertainty could even decrease.
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4.2. Applicability of the Trend Result

To be meaningful, the volatility-momentum relationship derived above must hold under
a wide range of circumstances. I now check that the conditions imposed in the proposition
are plausible, as asserted, in the sense of occurring with high frequency for diverse
parameter configurations. Beyond that, I examine the extent to which the magnitude of
trends predicts the magnitude of the volatility of volatility. Although not explicitly pre-
dicted by the proposition, a reliable linkage between these two quantities would greatly
strengthen the result by rendering g easily computable from returns. Finally, the prac-
tical relevance of the result depends on the scale of the predicted effects. Some simple
calculations illustrate the likely response of volatility to trends.
To address these issues, I return to the numerical technique of Section 3.3. As there,

long sample paths are simulated for different parameter values, and the exact conditional
moments are calculated along each using the integration result of Proposition 2.1. Now,
in addition, I compute the trend indicator functions

∫ t

0 ϕ(t−u) dDu and
∫ t

0 ψ(t−u) dW̃u

using the formulas for the kernels given in the Appendix. These are then compared to
gt ≡ 3 c̃ovt (µ, S)+ s̃kewt (µ)/σ 20 .
For this exercise, I again use the structural parameters λ0 and λ1 chosen in Section 3.3.

As these were not particularly restricted by economic theory, I vary each by an order
of magnitude, roughly bracketing the initial case. These are the only free parameters at
issue: the extra structural variable σ0 serves only to scale all the quantities, and hence
drops out of all the comparisons below. The numbers reported will be numerically iden-
tical for any specific choice.
The results, shown in Table 4.1, confirm that Proposition 4.1 should apply quite gen-

erally. The first three columns give the percentage of simulated days on which the con-
ditions Aτ , Bτ , and Aτ ∩Bτ held. For all cases, the latter frequency is between 81% and
93%. Columns 5 and 6 show that the third condition Cτ is highly likely, with the com-
posite intersection of all three holding only slightly less often—between 81% and 90%
of the time. Columns 4 and 7 show the frequencies with which the actual conclusions
of parts (I) and (II) of the proposition obtained. The relationships do hold somewhat
more generally than proven. But the numbers imply that the conditions imposed were
very nearly necessary. The systems simulated have not been shown to be stationary or
ergodic. So the reported frequencies may not well approximate either long-run averages
or unconditional probabilities. Nonetheless, the table demonstrates that the occurrence of
the events in question is not confined to brief periods or specific parameter choices.
The proof of Proposition 4.1 is based on approximation arguments which hold out the

possibility that, in addition to having the same sign, the sizes of the quantities studied
may be related. To assess this, I regress the actual values of gt in each simulation on the
trend indicator

∫ t

0 ψ(t − u) dW̃u. The results are summarized by the rightmost column
of Table 4.1. For all cases considered, a strong linear relationship does, in fact, emerge.
Over a time-span of 6400 days, a remarkable 69%–84% of the variability of the volatility
of volatility is accounted for by the simplest possible specification. It appears, then, that
the conclusion of the proposition can be significantly strengthened in a useful sense: the
trend indicator function tells us how much volatility will change in response to return
shocks as well as in which direction.

remark 4.1. Having validated this relationship, we can now see the essential form of
the volatility dynamics under the unobservable persistence model without having actually
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Table 4.1
Conditions of Proposition 4.1

λ1 λ0 Aτ Bτ Aτ ∩ Bτ (I ) Cτ Aτ ∩ Bτ ∩ Cτ (II ) R2

10.0 1.0 93.5 88.4 85.3 88.8 99.1 85.0 88.7 84.1
10.0 .10 83.1 95.7 81.1 83.5 99.3 81.0 83.6 69.2
3.0 .33 95.5 89.4 87.7 90.4 96.0 85.9 90.3 83.6
1.0 1.0 96.5 95.7 92.3 92.4 95.2 89.9 90.9 78.1
1.0 .10 95.2 92.8 91.7 95.5 87.3 85.7 92.0 74.6

The table shows the frequency of the occurrence of the conditions and conclusions of
Proposition 4.1 in 25 year simulations for each of the parameter choices shown, using
the method described in Section 3.3. The conditions Aτ , Bτ , and Cτ can be defined
respectively by equations (4.1), (4.3), and (4.5) in the text. The columns labeled (I)
and (II) show the frequencies of the conclusion obtaining for parts (I) and (II) of the
proposition. The last column reports the R2 from the regression of the true volatility of
volatility on the approximating process

∫ t

0 ψ(t − u) dW̃u.

closed the filtering system. If gt ≈ c1
∫ t

0 ψ(t − u)dW̃u + c2 where c1 and c2 are roughly
locally constant, then

h̃t ≈
∫ t

0
c0(u) du+ c1

∫ t

0

∫ s

0
ψ(s − u) dW̃u dW̃s + c2W̃t .

The first term is just the predictable component: the initial level plus accumulated mean-
reversion. The last term is like a constant-elasticity-of-variance contribution whose sign
is determined by the asymmetry of fundamental risk. The surprising component is the
middle term. As in the HARCH model of Müller et al. (1997) and the QARCH of
Sentana (1995), here the cross moments of return innovations have explanatory power
for levels of volatility. Strong empirical evidence in favor of such a contribution is pre-
sented in Dacorogna et al. (1998). The model introduced here provides both a theoretical
justification for this term and testable restrictions on the weighting of the cross moments.

A last topic the simulations can address is the strength of the volatility response
to trends. To illustrate the magnitudes involved, I tabulate the average absolute value
of the trend indicator for the scenario of Section 3.3. Multiplying this number by the
value of θ2 used there gives a typical value for g̃ of 0.025. In such a case, a three-
standard deviation return the next day (i.e, �W̃t = 3

√
�t) would raise or lower return

volatility by approximately 0.005 (half of a volatility point, or about 4% for this example)
depending on whether the shock reversed or continued the preceding trend. Changes of
this magnitude are economically significant for foreign exchange derivatives, and should
be readily detectable in high-frequency data.
This section has shown that the unobservable persistence model predicts a novel effect

in volatility dynamics: changes in momentum should lead to changes in volatility. This
feature emerges from the structure of investors’ inference problem: autocorrelated shocks
are more likely to be persistent shocks ex post. For all parameter configurations consid-
ered, numerical examples demonstrated that the conditions of the theorem were generally
satisfied over long periods. Further, the simulations established that an important exten-
sion of the theorem held almost as broadly: the actual magnitude of the trend indicator
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function predicted the magnitude of the instantaneous volatility-return covariance, not
just its sign, consistently and accurately. These findings constitute a remarkable—and
testable—suggestion about the pathwise properties of volatility.

5. CONCLUDING REMARKS

This paper shows that the major empirical regularities in the volatility of financial time
series can be viewed as arising from the changing inferences of investors about the
degree of persistence of fundamental shocks.
In advancing a structural explanation of these regularities, the work contributes to a

growing branch (some of which was cited in the introduction) of asset pricing research
which seeks an understanding of why and how specific features of the economic envi-
ronment lead to specific time-series properties. The full story of heteroscedasticity in
financial returns undoubtedly involves elements of market frictions, investor irrationality,
time-varying discount rates, and time-varying information flows. Theorists have recently
begun to map out the precise second moment implications of these differing mecha-
nisms. In similar fashion, this paper has built a theory from a realistic, almost self-
evident assumption: that some shocks have persistent effects and some do not. From this
I derived a full description of return dynamics resulting from the time-varying inferences
of investors.
Most notably, I deduced a strong testable implication about the relationship between

volatility and realized trends in the data. Interesting and potentially significant in its
own right, the result further demonstrates that the utility of the modeling approach goes
beyond the initial goal of explaining known patterns of heteroscedasticity.

APPENDIX

Proof of Proposition 2.1. First note that µt has the (pointwise) integral representa-
tion e

∫ t
0 Su du[µ0 +

∫ t

0 Sue
− ∫ u

0 Sv dvdDu] which may be verified by integration by parts (the
integrand is of bounded variation). Thus given µ0 and the histories of D and S we know
µt and hence Wt from σ0Wt = Dt − D0 −

∫ t

0 µu du. Or E(g(W ′, S ′, µ0 )|FD,S,µ0) =
g(�W(ω,ω), S, µ0) where �W is defined by (2.10). So

E(g(W ′, S ′, µ0 )|FD) = E(g(�W,S,µ0 )|FD).(A.1)

Conditionally, only the path �W is possible. So it suffices to find the marginal distribution
over the subspace @ ≡ ({0, 1}T ×R) of values for S and µ0 induced by the realization D.

The rest of the proof consists of verifying sufficient conditions to apply a function
space version of Bayes’ theorem due to Kallianpur and Striebel (1968), which will give
us this marginal.
Since µ depends only on θ ∈ @ and the path of D, we may write

dDt = At(θ,D)dt + σ0dWt .(A.2)
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Then we note that θ is independent of W . In addition we need the following:

(A) D is by definition the strong solution to (A.2).
(B) At(θ,D) = µt(ω) is continuous on [0, 1], hence

∫ T

0 |At |dt < ∞ for all ω.
(C) σ0 > 0 is assumed.
(D) By continuity again

∫ T

0A
2
t dt < ∞. MoreoverAt(θ,W) = e−

∫ t
0 Su du·[µ0+

∫ t

0 Sue
∫ u
0 Sv dv

σ0 dWu] also has continuous paths so the same applies.
(E) E|At(θ,D)| ≤ (Eµ2t )

1/2 = (Eµ20 + E(
∫ t

0 Suσ0 dWu)
2)1/2 ≤ (Eµ20 + σ0t)

1/2.
So

∫ T

0 E|At | dt < ∞. For any subsequence Gt of sub σ -algebras of Ft ;∞ >∫ T

0 EA2t dt = E
∫ T

0 E(A2t |Gt ) dt ≥ E
∫ T

0 E(At |Gt )
2dt . Thus

∫ T

0 E(At |Gt )
2dt < ∞

a.s.

Under these conditions, Theorem 7.23 of Liptser and Shiryayev (1977) applies, and
we may conclude that the process (Du)

t
u=0 induces on @ a measure having unnormalized

density with respect to the (marginal) prior Pθ = P |F∩@ given by

ρ(ω′;ω, t) = e
− 1
2

∫ t
0

m2u(ω
′ ;ω)

σ20
du+∫ t

0
mu(ω

′ ;ω)

σ20
dDu(ω)

.(A.3)

Hence

E(g(�W,S,µ0 )|FD
t ) =

∫
@

g(�W,S,µ0)ρ(ω
′;ω, t) dPθ

/∫
@

ρ(ω′;ω, t) dPθ ,

which combined with (A.1) implies (2.11). ✷

Proof of Proposition 2.2. The proposition is an application of Theorem 8.1 in Liptser
and Shiryayev (1977) once appropriate regularity conditions have been checked. For
all of these it will suffice to verify that µt − µ0 ≡ Xt has moments of all orders,
bounded in t . But this is clear. E|Xt |p = E[E(|Xt |p|Su, 0 ≤ u ≤ t)]. Given the S

path, Xt is normal with 0 mean and variance
∫ t

0 Su du. So the conditional pth moment
is less than that of N (0, t), hence the same is true of the unconditional moment. Also
E(|µkSt |p) ≤ (ESt)

1/2 (Eµ
2kp
t )1/2 ≤ (Eµ

2kp
t )1/2. Thus these moments have the same

property.
If αt denotes generically the drift term in the differential representation of either µ

kSt

or µk
t , then by Ito’s Lemma, αt will be a linear combination of terms of the same form

(cf. equations (2.6), (2.4)). These considerations imply that
∫ T

0 Eα2t dt,
∫ T

0 E|µkSt |2dt ,
and

∫ T

0 E|µk
t |2dt are all finite, which suffices to apply the desired result. ✷

Proof of Lemma 3.1. With the stated assumptions the value of the equity claim is
just Ẽt

∫∞
t

e−r(u−t)Du du = Ẽt

∫∞
t

e−r(u−t)[σ0(Wu −Wt)+Dt +
∫ u

t
µv dv] du. Examining

the integrands on the right, we can interchange the integrations of the first term (since∫∞
t

e−r(u−t)(u− t) du < ∞) to get rid of it. The second term is Dt/r . The third is

Ẽt

∫ ∞

t

∫ u

t

(
µt +

∫ v

t

σ0Sr dWr

)
dv e−r(u−t) du

= µ̃

r2
+ σ0Ẽt

∫ ∞

t

∫ u

t

∫ u

t

Sr dWr dv e−r(u−t) du.

To kill the quadruple integral we only need to be careful in applying Fubini’s theorem.
If Yv ≡ ∫ v

t
Sr dWr then ẼtY

2
v = Ẽt (Ẽt (Y

2
v |Sr, t ≤ r ≤ v)) = Ẽt

∫ v

t
Sr dr ≤ (v − t).
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So Ẽt |Yv| ≤ (v − t)1/2, and
∫ u

t
(v − t)1/2 dv < ∞ ⇒ Ẽt

∫ u

t
|Yv| dv = ∫ u

t
Ẽt |Yv| dv. Since

this last integral is less than
∫ u

t
(v− t)1/2 dv = 2

3 (u− t)3/2 and
∫∞
t

e−r(u−t)(u− t)3/2 du <

∞, this permits Ẽt

∫∞
t

e−r(u−t)
∫ u

t
Yv dv du = ∫∞

t
e−r(u−t)Ẽt

∫ u

t
Yv dv du. We have already

seen that Ẽt

∫ u

t
Yv dv = ∫ u

t
ẼtYv dv. Conditioning again on the outcome of S, we see

that ẼtYv = 0,∀v. ✷

Proof of Proposition 3.1. FP
t ⊂ FD

t is obvious. Next, I claim that µ̃t is FP
t measur-

able for all t . This will imply the desired result since for the models under consideration
Pt is an invertible (in fact, linear here) function of Dt and µ̃t .
To establish the claim, write the model generically as Pt = θ0 + θ1Dt + θ2µ̃t , and

assume θ1 �= 0, θ2 �= 0. (If θ1 = 0 the claim is obvious. If θ2 = 0 the Proposition is
obvious. If both are zero the result is superfluous.) Then we have

dPt = θ1dDt + θ2dµ̃t = θ1µ̃tdt + h̃tdW̃t

and
dµ̃t = �t dW̃t ,

where
h̃t ≡ θ1σ0 + θ2�t �t ≡ σ0S̃t + ṽart (µt )/σ0.

But then (h̃t �= 0,∀t)
γtdPt = γtθ1µ̃tdt + �t dW̃t ⇒
dµ̃t = −γtθ1µ̃tdt + γtdPt ,

where γt ≡ �t /h̃t . This last equation has solution

µ̃t = e−θ1
∫ t
0 γs ds

(
µ̃0 + θ1

∫ t

0
γue

θ1
∫ u
0 γs dsdPu

)
.

Moreover, as γt is bounded, this solution is unique (Protter 1990, Thm. V.7, suffices).
Now the hypothesis of the proposition implies that µ̃0 is FP

0 (hence FP
t ) measurable.

But also �t , being the rate of change of the quadratic variation of Pt , is FP
t measurable.

Hence �t is. Hence γt is. So the entire right side of the last equation is. ✷

Proof of Proposition 4.1. On the set Aτ it suffices to show the conclusion (I) with
c̃ovτ (µ, S) on the left-hand side of (4.6). On Bτ that covariance has the same sign as∫

@

∫
C

µτ (Sτ −�S)δ(�W)dPW |θ dPθ

where θ ≡ {µ0, S} ∈ @ ≡ R × {0, 1}T , PW |θ is the marginal prior over @, and PW |θ is
Weiner measure (by the assumed independence). Integrating over the function δ just has
the effect of fixing the Weiner path as a function of the data and the other parameters,
hence identifying µ. This leaves∫

@

(Sτ −�S)
[
µ0e

− ∫ τ
0 Su du +

∫ τ

0
Sve

− ∫ τ
v
Su du dDv(ω)

]
dPθ .

Since �S = ∫
@
SτdPθ , we can rewrite that integral as

�S(1−�S)(Eθ [µ|Sτ = 1]− Eθ [µ|Sτ = 0])(A.4)

where,

Eθ [µτ |Sτ = 1](ω) ≡
∫
@

Sτ

[
µ0e

− ∫ τ
0 Su du +

∫ τ

0
Sve

− ∫ τ
v
Su dudDv(ω)

]
dPθ

/∫
@

Sτ dPθ .

The factor �S(1−�S) has no effect on the sign. So it suffices to characterize the difference
in conditional expectations in (A.4).
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Now

Eθ

[ ∫ τ

0
Sve

− ∫ τ
v
Su du dDv(ω)

∣∣Sτ = i
]
=

∫ τ

0

d

dv
Eθ

[
e−

∫ τ
v
Su du|Sτ = i

]
dDv(ω)

since the integrand is nonnegative and bounded (uniformly in v). And then

Eθ

[
e−

∫ τ
v
Su du|Sτ = i

]
= �SEθ

[
e−

∫ τ
v
Su du|Sτ = i, S0 = 1

]+ (1−�S)Eθ

[
e−

∫ τ
v
Su du|Sτ = i, S0 = 0

]
.

The Eθ terms on the right, which are just unconditional (prior) expectations, can be
computed as the solution to a two-point boundary problem. For large τ , however, the
solutions will be the same as those of the time-reversed expectations Eθ [e

− ∫ τ−v
0 Su du|S0 =

i], which will also equal Eθ [e
− ∫ τ

v
Su du|Sτ = i]. Likewise, using the time-reversed measure,

Eθ [µ0e
− ∫ τ

0 Su du|Sτ = i, S0 = j ]→ Eθ(µ0)Eθ [e
− ∫∞

0 Su du|S0 = i] = 0

since Pθ(
∫∞
0 Su du < ∞) = 0.

Standard Markov chain limiting arguments now imply that the vector η(τ − v) ≡
[Eθ(e

− ∫ τ−v
0 Su du|S0 = 0), Eθ(e

− ∫ τ−v
0 Su du|S0 = 1)]′ must solve the initial value problem

η̇ = Fη, η(0) =
(
1
1

)
, F =

(−λ0 λ0
λ1 −λ1 −1

)
.

So η(τ − v) = exp{(τ − v)F } · η(0). Since [Eθ(Sve
− ∫ τ

v
Su du|Sτ = 0), Eθ(Sve

− ∫ τ
v
Su du|Sτ =

1)]′ = −η̇(τ − v), we have

Eθ(µ|Sτ = 1)− Eθ(µ|Sτ = 0) = −
∫ τ

0
[−1, 1]η̇(τ − v) dDv.

This is the representation that was claimed in (I). The integrand on the right (which
is ϕ(τ − v) in the statement of the theorem) can be written in closed form as follows:

ϕ(u) = e−
β
2 u
(
cosh (αu/2)− β

α
sinh (αu/2)

)
β ≡ 1+ λ0 + λ1

α ≡
√
β2 − 4λ0.

This is always real since β ≥ 1 + λ0 ≥ 2
√
λ0. The function starts at one and flips sign

once. In addition, we may directly compute that

φ(u) ≡
∫ u

0
ϕ(v)dv = 2

α
e−

β
2 u sinh(αu/2)(A.5)

which arises below.
If the degree of persistence parameter κ �= 1 is present (cf. Remark 2.1 in the text),

it multiplies S in all the exponential integral terms. This causes the matrix F above to

become
( −λ0 λ0

λ1 −λ1−κ

)
. The solution ϕ gets multiplied by κ and the constants α and β

become
√
β2 − 4κλ0 and κ + λ0 + λ1 respectively. In addition, the definition of the set



442 timothy c. johnson

At on which the theorem holds is altered to sign(c̃ovt (µ, S)) = sign(3κ c̃ovt (µ, S) +
s̃kewt (µ)/σ 20 ), which will be more or less likely than before depending on whether the
impact parameter is over or under one.
To get from (4.6) to (4.7), use equation (2.14) in the text to replace dD as the integrat-

ing variable. Then, by the Fubini theorem for stochastic integrals (Protter 1990, VI.45),∫ τ

0
ϕ(τ − u)(µ̃u du) = µ̃0

∫ τ

0
ϕ(τ − u) du+

∫ τ

0

∫ u

0
ϕ(τ − u)�v dW̃v du

=
∫ τ

0

[ ∫ τ−v

0
ϕ(u) du

]
�v dW̃v

=
∫ τ

0
φ(τ − v)�v dW̃v.

Here the term involving the initial conditions on the second line is suppressed because∫∞
0 ϕ(x) dx = 0 (cf. (A.5) above) and τ is taken to be arbitrarily large. From the last
line and part (I) we conclude

sign(gτ ) = sign
( ∫ τ

0
[ϕ(τ − v)+ φ(τ − v)�v]σ0 dW̃v

)
.

Now consider approximating the last integrand with �v replaced by the constant ĥ.
The result is the right-hand side of (4.7). To conclude that the two have the same sign,
it suffices that the absolute value of their difference is less than the maximum of the
absolute value of either one.
In fact, the restriction Cτ imposed more than that. To see this, write the difference as∫ τ

0
φ(τ − v)(ĥ− �v) dW̃v =

∫ τ

0
ϕ(τ − u)(µ̂u − µ̃u) du

(using the definition of µ̂). This is the quantity restricted on Cτ to be not greater than
| ∫ τ

0 ϕ(τ − u)dDu|, which is not greater than

max
[∣∣∣ ∫ τ

0
ϕ(τ − u) dDu

∣∣∣, ∣∣∣ ∫ τ

0
ψ(τ − u) dW̃u

∣∣∣],
which are the two quantities in question. This establishes (II). ✷

references

Andersen, T. G. (1996): Return Volatility and Trading Volume: An Information Flow Inter-
pretation of Stochastic Volatility, J. Finance 51, 169–204.

Andersen, T. G., and T. Bollerslev (1997): Deutsche Mark Dollar Volatility: Intraday
Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies,
J. Finance 52, 219–265.

Baba, Y., D. F. Hendry, and R. M. Starr (1992): The Demand for M1 in the USA:
1960–1988. Rev. Economic Studies 59, 25–62.

Baillie, R. T., and T. Bollerslev (1989): The Message in Daily Exchange Rates: A Con-
ditional Variance Tale, J. Business & Econ. Statistics 7, 295–307.

Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen (1996): Fractionally Integrated Gen-
eralized Autoregressive Conditional Heteroscedasticity, J. Econometrics 74, 3–30.



return dynamics when persistence is unobservable 443

Ball, L. (1998): Another Look at D long-Run Money Demand; NBER Working paper #6597.

Barberis, N., A. Shleifer, and R. Vishny (1998): A Model of Investor Sentiment, J. Finan-
cial Econ. 49, 307–344.

Barsky, R. B., and J. B. deLong (1993): Why Does the Stock Market Fluctuate?, Quart.
J. Econ. 108, 291–311.

Berry, T. D., and K. M. Howe (1994): Public Information Arrival, J. Finance 49, 1331–1346.

Björk, T. (1980): Finite Dimensional Optimal Filters for a Class of Itô Processes with Jump-
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